เมธีนามีน

จากวิกิพีเดีย สารานุกรมเสรี
ไบยังการนำทาง ไปยังการค้นหา
เมธีนามีน
Hexamine.svg
Hexamine-3D-balls.png
ชื่อตาม IUPAC 1,3,5,7-Tetraazatricyclo[3.3.1.13,7]decane
ชื่ออื่น Hexamine; Hexamethylenetetramine;
Urotropine; 1,3,5,7-

tetraazaadamantane, Formin, Aminoform

เลขทะเบียน
เลขทะเบียน CAS [100-97-0][CAS]
PubChem 4101
EC number 202-905-8
KEGG D00393
MeSH Methenamine
ChEBI 6824
SMILES
InChI
ChemSpider ID 3959
คุณสมบัติ
สูตรเคมี C6H12N4
มวลต่อหนึ่งโมล 140.186 g/mol
ลักษณะทางกายภาพ White crystalline solid
ความหนาแน่น 1.33 g/cm3 (at 20 °C)
จุดหลอมเหลว

280 °C, 553 K, 536 °F

ความสามารถละลายได้ ใน น้ำ 85.3 g/100 mL
pKa 4.89[1]
ความอันตราย
อันตรายหลัก Highly combustible, harmful
 X mark.svg 14 (verify) (what is: Yes check.svg 10/X mark.svg 10?)
หากมิได้ระบุเป็นอื่น ข้อมูลข้างต้นนี้คือข้อมูลสาร ณ ภาวะมาตรฐานที่ 25 °C, 100 kPa
แหล่งอ้างอิงของกล่องข้อมูล

เมธีนามีน หรือ เฮกซะเมทิลีนเตตรามีน (อังกฤษ: Methenamine หรือ Hexamethylenetetramine) เป็นสารประกอบอินทรีย์เฮเทอโรไซคลิก มีสูตรโครงสร้างคือ (CH2)6N4 ลักษณะเป็นผลึกสีขาว ละลายได้ดีในน้ำและตัวทำละลายอินทรีย์ที่มีขั้ว โครงสร้างโมเลกุลมีลักษณะคล้ายกรงเหมือนกับอะดาแมนแทน เมธีนามีนถูกนำมาใช้ประโยชน์ในการสังเคราะห์สารประกอบเคมีอื่น เช่น พลาสติก ยา สารเติมแต่งยาง สารนี้มีจุดระเหิด ณ สภาวะสุญญากาศที่ 280 องศาเซลเซียส[2]

เมธีนามีนเป็นสารที่ได้จากการเกิดปฏิกิริยาระหว่างงฟอร์มาลดีไฮด์กับแอมโมเนีย[3] ถูกค้นพบโดยอเล็กซานเดอร์ บัทเลรอฟ เมื่อ ค.ศ. 1859[4] มีการนำเมธีนามีนมาใช้ประโยชน์ในหลายวัตถุประสงค์ ทั้งใช้เป็นส่วนผสมในการผลิตวัสดุคอมโพสิต[3] ใช้เป็นยาปฏิชีวนะ[5] เป็นสีย้อมในการศึกษาทางมิญชวิทยา[6] เชื้อเพลิงแข็ง[7] สารกันเสีย[8] ตัวทำปฏิกิริยา[9] รวมไปถึงการผลิตวัตถุระเบิด[3]

ถึงแม้ว่าเมธีนามีนจะสามารถนำไปใช้ประโยชน์ได้อย่างหลากหลาย แต่เนื่องด้วยความต้องการของตลาดที่มีน้อยลง ประกอบกับการมีสารตัวเลือกอื่นที่เพิ่มมากขึ้น ทำให้ปริมาณการผลิตสารนี้ลดลงอย่างต่อเนื่องตั้งแต่ช่วงปี ค.ศ. 1990 เป็นต้นมา ในปัจจุบันยังมีการผลิตสารนี้อยู่ในเยอรมนี เนเธอร์แลนด์ อิตาลี ออสเตรเลีย สหรัฐอเมริกา และเม็กซิโก[7]

ประวัติ[แก้]

เมธีนามีน หรือที่เรียกกันเป็นทางการว่า เฮกซะเมทิลีนเตตรามีน ถูกค้นพบโดยนักเคมีชาวรัสเซีย อเล็กซานเดอร์ บัทเลรอฟ เมื่อ ค.ศ. 1859[4][10][11] โดยถูกเตรียมขึ้นได้จากการทำปฏิกิริยากันระหว่างฟอร์มาลดีไฮด์กับแอมโมเนีย[3] โดยการเกิดปฏิกิริยาดังกล่าวสามารถถูกเหนี่ยวนำได้ทั้งในกรณีที่สารตั้งต้นทั้งสองอยู่ในสถาะแก๊สและสารละลาย

Hexamine synthesis diagram
แอมโมเนีย
ฟอร์มาลดีไฮด์
เฮกซะเมทิลีนเตตรามีน
น้ำ
แผนภาพแสดงกระบวนการสังเคราะห์เฮกซะเมทิลีนเตตรามีน

โมเลกุลของเฮกซะเมทิลีนเตตรามีนมีความคล้ายคลึงกันเป็นอย่างมากกับโครงสร้างของอะดาแมนแทน โดยจะมีโครงสร้างเป็นแบบสมมาตรทรงสี่หน้ารูปร่างคล้ายกรง มุมทั้งสี่มุมเป็นอะตอมของไนโตรเจน เชื่อมต่อกับอะตอมไนโตรเจนอื่นในโมเลกุลด้วยสะพานเมทิลีน (methylene bridge) ถึงแม้ว่าโมเลกุลของเฮกซะเมทิลีนเตตรามีนจะมีรูปร่างคล้ายกรง แต่ก็ไม่มีตำแหน่งด้านหน้าใดๆในโมเลกุลที่จะสามารถเข้าจับกับอะตอมหรือโมเลกุลอื่นเพิ่มเติมได้ เช่นที่พบได้ในอีเทอร์มงกุฏ หรือโครงสร้างคริปแทนด์ขนาดใหญ่

โมเลกุลของเฮกซะเมทิลีนเตตรามีนจะแสดงคุณสมบัติคล้ายคลึงกับโมเลกุลของกรดอะมิโน โดยสามารถเกิดโปรโตเนชันและ N-อัลคิเลชันได้ (เช่น ควอเทอร์เนียม-15)

การใช้ประโยชน์[แก้]

ส่วนใหญ่แล้วเฮกซะเมทิลีนเตตรามีนมักถูกนำมาใช้ในการผลิตผงหรือยางฟีนอลฟอร์มาลดีไฮด์ชนิดเหลว และวัสดุคอมโพสิตชนิดยางฟีนอลิคโดยใช้แม่พิมพ์ (phenolic resin moulding compound) เพื่อเป็นสารทำให้คอมโพสิตแข็งตัว โดยผลิตภัณฑ์ต่างๆที่ผลิตได้เหล่านี้มักเป็นผลิตภัณฑ์ที่ต้องอาศัยการยึดเกาะ เช่น เบรกรถ ผ้าคลัตช์ ผ้าทราย ผ้าใยสังเคราะห์ วัสดุทนไฟ เป็นต้น[3]

นอกจากนี้ยังพบว่าเฮกซะเมทิลีนเตตราอาจสามารถทำหน้าที่เป็นแม่พิมพ์โครงร่างโมเลกุล (molecular building block) สำหรับการสังเคราะห์ผลึกโครงสร้างนาโนโดยจัดวางโมเลกุลอย่างเป็นระเบียบได้ด้วยตนเอง (self-assembly) ได้ด้วย[12][13]

การใช้ประโยชน์ทางการแพทย์[แก้]

ตัวอย่างฉลากยาเมธีนามีนแมนดีเลท ความแรง 1,000 มิลลิกรัมต่อเม็ด บรรจุ 100 เม็ด ของบริษัทเซตอนฟาร์มาซูติคอล สหรัฐอเมริกา

ในวงการแพทย์ได้ริเริ่มการนำเฮกซะเมทิลีนเตตรามีนมาใช้ในการฆ่าเชื้อในระบบทางเดินปัสสาวะเป็นครั้งแรกเมื่อปี ค.ศ. 1899[14] แต่ใช้ได้ผลในผู้ป่วยที่มีค่าพีเอชของสารละลายในทางเดินปัสสาวะเป็นกรดเท่านั้น ส่วนในผู้ป่วยที่มีสารละลายในทางเดินปัสสวะเป็นด่างมักพิจารณาใช้กรดบอริกแทนสำหรับข้อบ่งใช้ข้างต้น[15] โดยนักวิทยาศาสตร์พบว่ามีสหสัมพันธ์แบบแปรผันตรงระหว่างความเป็นกรดของสภาพแวดล้อมรอบเฮกซะเมทิลีนเตตรามีนกับการสลายตัวของสารดังกล่าว[14] ดังนั้น ประสิทธิภาพในการรักษาของเฮกซะเมทิลีนเตตรามีนจึงขึ้นอยู่กับความเป็นกรดของปัสสาวะมากกว่าปริมาณยาทั้งหมดที่ผู้ป่วยได้รับในการรักษา[15] ในทางตรงกันข้าม หากสภาพแวดล้อมภายนอกมีสภาวะเป็นด่างนั้น เฮกซะเมทิลีนเตตรามีนแทบจะไม่สามารถออกฤทธิ์ฆ่าเชื้อก่อโรคใดๆ ได้เลย[15]

นอกจากนี้ เฮกซะเมทิลีนเตตรามีนยังเคยถูกนำมาใช้ในกระบวนการการรักษาทหารได้รับบาดเจ็บจากการสูดก๊าซพิษฟอสจีนในช่วงสงครามโลกครั้งที่ 1 ซึ่งการศึกษาทางคลินิกในภายหลังพบว่า การได้รับเฮกซะเมทิลีนเตตรามีนในขนาดสูงก่อนการสูดดมก๊าซพิษดังกล่าวจะช่วยป้องกันการเกิดพิษจากก๊าซนั้นได้ ในทางตรงกันข้าม การได้รับเฮกซะเมทิลีนเตตรามีนภายหลังจากการสัมผัสก๊าซพิษฟอสจีนแล้ว พบว่าไม่ก่อให้เกิดผลในการรักษาอาการพิษแต่อย่างใด[16]

ในปัจจุบัน เฮกซะเมทิลีนเตตรามีนในรูปแบบเกลือของกรดแมนดีลิค (ชื่อสามัญตามเภสัชตำรับอังกฤษ คือ เมธีนามีน แมนดีเลท[17]) นั้นถูกนำมาใช้ในการรักษาการติดเชื้อแบคทีเรียในระบบทางเดินปัสสาวะ โดยสารดังกล่าวจะสลายตัวในกระเพาะปัสสาวะที่มีสภาวะเป็นกรด ได้ผลิตภัณฑ์เป็นฟอร์มาลดีไฮด์และแอมโมเนีย ซึ่งฟอร์มาลดีไฮด์ที่เกิดขึ้นนี้จะมีคุณสมบัติในการฆ่าแบคทีเรียก่อโรค ส่วนกรดแมนดีลิคที่ถูกเพิ่มเข้ามาในเภสัชตำรับนั้นมีจุดประสงค์เพื่อเสริมฤทธิ์ของฟอร์มาลดีไฮด์ อย่างไรก็ตาม เพื่อให้มั่นใจว่าค่าพีเอชของสารละลายในกระเพาะปัสสาวะนั้นเอื้อต่อการออกฤทธิ์ของเฮกซะเมทิลีนเตตรามีน จึงมักมีการบริหารวิตามินซีหรือแอมโมเนียมคลอไรด์ให้กับผู้ป่วยร่วมด้วย เพื่อเพิ่มความเป็นกรดของสารละลายในกระเพาะปัสสาวะ อย่างไรก็ตาม การใช้เฮกซะเมทิลีนเตตรามีนเพื่อเป็นยาปฏิชีวนะนี้มีปริมาณการใช้ลดลงในช่วงปลายคริสต์ทศวรรตที่ 1990 เนื่องจากอาการไม่พึงประสงค์ที่เกิดขึ้น โดยเฉพาะอย่างยิ่งการเกิดกระเพาะปัสสาวะอักเสบรุนแรงชนิด hemorrhagic cystitis จากการเหนี่ยวนำของสารเคมีในผู้ที่ได้รับยาเกินขนาด[5] แต่ ณ ปัจจุบัน ยาดังกล่าวได้รับการรับรองใหม่อีกครั้งเพื่อใช้สำหรับข้อบ่งใช้ดังข้างต้น อันเป็นมาตรการตอบสนองต่อความชุกของการดื้อยาปฏิชีวนะของแบคทีเรียที่มากขึ้นในปัจจุบัน โดยยานี้มีความเหมาะสมอย่างยิ่งที่จะนำมาใช้ต่อเนื่องระยะยาวเพื่อป้องกันการเกิดการติดเชื้อในระบบทางเดินปัสสาวะ เนื่องจากแบคทีเรียไม่สามารถปรับตัวให้ดื้อต่อฟอร์มาลดีไฮด์ได้ อย่างไรก็ดี ยานี้ไม่สามารถใช้ในผู้ป่วยที่มีการทำงานของไตบกพร่องได้ เนื่องจากจะทำให้อาการชองโรคแย่ลงและเกิดอาการไม่พึงประสงค์จากยาได้มากขึ้น นอกจากนี้แล้วยังมีการพัฒนาเฮกซะเมทิลีนเตตรามีนให้อยู่ในรูปแบบยาครีมและสเปรย์เพื่อใช้ในการรักษาภาวะที่เหงื่อออกมากและกลิ่นตัวแรงเกินไป[ต้องการแหล่งอ้างอิงทางการแพทย์]

อาการไม่พึงประสงค์ที่อาจเกิดขึ้นได้ในผู้ที่ได้รับการรักษาด้วยเฮกซะเมทิลีนเตตรามีน ได้แก่ เกิดผื่นคันตามผิวหนัง ระคายเคืองทางเดินอาหาร คลื่นไส้ อาเจียน กระเพาะอาหารอักเสบ ท้องเสีย เกิดตะคริวที่ท้อง ปัสสาวะไม่ออกหรือปัสสาวะขัด มีเลือดปนมากับปัสสาวะหรือปัสสาวะเป็นเลือด ปัสสาวะถี่และบ่อย การตรวจปัสสาวะอาจพบมีโปรตีนในปัสสาวะ[11] ซึ่งอาการไม่พึงประสงค์ที่เกิดขึ้นกับระบบทางเดินปัสสาวะเป็นสาเหตหลักที่ทำให้มีการใช้เฮกซะเมทิลีนเตตรามีนลดน้อยลงในปัจจุบัน[5]

การย้อมสีทางมิญชวิทยา[แก้]

ในการศึกษาทางมิญชวิทยานั้นมีการนำสีย้อมเมธีนามีนซิลเวอร์หลายชนิดมาใช้เพื่อย้อมติดสีแกรม ได้แก่:

เชื้อเพลิงแข็ง[แก้]

เช่นเดียวกันกับ 1,3,5-ไตรออกเซน, เฮกซะเมทิลีนเตตรามีนเป็นส่วนประกอบหนึ่งของเชื้อเพลิงเม็ดเฮกซะมีนที่นิยมใช้ในกลุ่มคนตั้งแคมป์, ออกค่าย, หน่วยทหาร เพื่อเป็นแหล่งความร้อนในการประกอบอาหารและการปันส่วนเชื้อเพลิงในหน่วยทหาร เชื้อเพลิงแข็งชนิดนี้มีข้อดีคือไม่ก่อให้เกิดควันเมื่อเกิดการเผาไหม้, มีปริมาณความร้อนจากการเผาไหม้ (Heat of combustion) ที่สูงมากถึง 30.0 เมกะจูลต่อกิโลกรัม (MJ/kg), ไม่กลายเป็นสาเหลวเมื่อเกิดการเผาไหม้ และไม่เหลือเถ้าจากการเผา นอกจากนี้ เชื้อเพลิงเมธีนามีน (เฮกซะมีน) มาตรฐาน 0.149 กรัม ถูกนำมาใช้เป็นแหล่งกำเนิดไฟที่สะอาดและทำซ้ำได้ในห้องปฏิบัติกันไฟเพื่อทดสอบการติดไฟของพรมปูพื้น[7]

วัตถุเจือปนอาหาร[แก้]

เฮกซะเมทิลีนเตตรามีน หรือเฮกซะมีนยังถูกนำมาใช้เป็นวัตถุเจือปนอาหารเพื่อป้องกันการเน่าเสีย (INS number 239) โดยได้รับการรับรองจากสหภาพยุโรปให้ใช้สารนี้เพื่อจุดประสงค์ดังกล่าวได้[8] ภายใต้เลขอี E239 อย่างไรก็ตาม เฮกซะเมทิลีนเตตรามีนไม่ได้รับการรับรองให้ใช้เป็นวัตถุเจือปนอาหารในสหรัฐอเมริกา, รัสเซีย, ออสเตรเลีย และนิวซีแลนด์[18]

ตัวทำปฏิกิริยาในเคมีอินทรีย์[แก้]

เฮกซะเมทิลีนเตตรามีนเป็นตัวทำปฏิกิริยาอเนกประสงค์ในการสังเคราะห์อินทรีย์,[9] สารนี้ถูกนำมาใช้ในปฏิกิริยาดัฟฟ์ (ปฏิกิริยาฟอร์มิเลชันของเอรีน),[19] ปฏิกิริยาซอมเมเลต์ (การเปลี่ยนเบนซิลเฮไลด์ไปเป็นอัลดีไฮด์),[20] และปฏิกิริยาดีลีพีน (การสังเคราะห์เอมีนจากอัลคิลเฮไลด์)[21]

วัตถุระเบิด[แก้]

เฮกซะเมทิลีนเตตรามีนเป็นส่วนประกอบพื้นฐานในการสร้างระเบิด RDX และระเบิด C-4[3] รวมไปถึงระเบิดออคโตเจน, เฮกซามีนไดไนเตรท และ เฮกซะเมทิลีน ไตรเปอรอกไซด์ ไดเอมีน (HMTD) ตัวอย่างปฏิกิริยาการสร้างระเบิด RDX ดังแสดงต่อไปนี้[22]

เฮกซะมีน + 10 กรดไนตริกRDX + 3 เมทิลีนไดไนเตรท + แอมโมเนียมไนเตรท + 3 น้ำ
(CH2)6N4 + 10 HNO3 → (CH2-N-NO2)3 + 3 CH2 (NO3)2 + NH4NO3 + 3 H2O

แนวโน้มการผลิต[แก้]

ตั้งแต่ช่วงปี ค.ศ. 1990 เป็นต้นมา จำนวนผู้ผลิตเฮกซะเมทิลีนเตตรามีนในยุโรปนั้นลดลงอย่างต่อเนื่อง อาทิ โรงงาน SNPE ของฝรั่งเศสที่ปิดกิจการไปในปี 1990, การผลิตในโรงงานที่ลอยนา ประเทศเยอรมนีได้หยุดลงในปี ค.ศ. 1993, ปี ค.ศ. 1996 โรงงานผลิตในอาโกรลิงซ์ได้ปิดกิจการลง, ปี ค.ศ. 2001 บอร์เดนผู้ผลิตเฮกซะเมทิลีนเตตรามีนในสหราชอาณาจักรได้หยุดการดำเนินกิจการ, ปี ค.ศ. 2006 โรงงานเคมโค (Chemko) ในสาธารณรัฐสโลวักได้หยุดการผลิตยานี้ลงเช่นกัน โดยในปัจจุบัน โรงงานที่ยังคงมีการผลิตเฮกซะเมทิลีนเตตรามีนอยู่ ได้แก่ INEOS ของเยอรมนี, Caldic ของเนเธอร์แลนด์, และ Hexion ของอิตาลี ส่วนในสหรัฐอมเริกา Eli Lilly and Company ได้หยุดการผลิตสารนี้ไปเมื่อปี ค.ศ. 2002[7] นอกเหนือจากยุโรปแล้ว ในออสเตรเลียและเม็กซิโกยังมีการผลิตเฮกซะเมทิลีนเตตรามีนเพื่อใช้เป็นเม็ดเชื้อเพลิงซึ่งดำเนินการโดย บริษัทธาลส์ ออสเตรเลีย จำกัด (Thales Australia) และ เอบิยา (Abiya) ตามลำดับ

เฮกซะเมทิลีนเตตรามีนมีจำหน่ายในประเทศไทยภายใต้ชื่อการค้า Hiprex (ฮิปเปร็กซ์) โดยบริษัท Aventis Pharmaceuticals, Urex (ยูเร็กซ์) ของบริษัท Vatring Pharmaceuticals และ Mandelamine (แมนเดลามีน) ของบริษัท Warner Chilcott Laboratories[11]

ดูเพิ่ม[แก้]

อ้างอิง[แก้]

  1. Cooney, A. P.; Crampton, M. R.; Golding, P. (1986). "The acid-base behaviour of hexamine and its N-acetyl derivatives". J. Chem. Soc., Perkin Trans. 2 (6): 835. doi:10.1039/P29860000835. 
  2. PubChem. "Methenamine". สืบค้นเมื่อ March 28, 2018. 
  3. 3.0 3.1 3.2 3.3 3.4 3.5 Eller, K.; Henkes, E.; Rossbacher, R.; Höke, H. (2000). "Amines, Aliphatic". Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH. ISBN 9783527306732. doi:10.1002/14356007.a02_001. 
  4. 4.0 4.1 Butlerow, A. (1859). "Ueber einige Derivate des Jodmethylens" [On some derivatives of methylene iodide]. Ann. Chem. Pharm. (ใน German) 111 (2): 242–252. doi:10.1002/jlac.18591110219.  In this paper, Butlerov discovered formaldehyde, which he called "Dioxymethylen" (methylene dioxide) [page 247] because his empirical formula for it was incorrect (C4H4O4). On pages 249–250, he describes treating formaldehyde with ammonia gas, creating hexamine.
  5. 5.0 5.1 5.2 Ross, R. R.; Conway, G. F. (1970). "Hemorrhagic cystitis following accidental overdose of methenamine mandelate". Am. J. Dis. Child. 119 (1): 86–87. PMID 5410299. doi:10.1001/archpedi.1970.02100050088021. 
  6. 6.0 6.1 "Renal Pathology". สืบค้นเมื่อ 2008-11-25. 
  7. 7.0 7.1 7.2 7.3 Alan H. Schoen (2004), Re: Equialence of methenamine Tablets Standard for Flammability of Carpets and Rugs Archived 2008-10-05 at the Wayback Machine.. U.S. Consumer product Safety Commission, Washington, DC, July 29, 2004. Many other countries who still produce this include Russia, Saudi Arabia, China and Australia.
  8. 8.0 8.1 UK Food Standards Agency: "Current EU approved additives and their E Numbers". สืบค้นเมื่อ 2011-10-27. 
  9. 9.0 9.1 Blažzević, N.; Kolbah, D.; Belin, B.; Šunjić, V.; Kajfež, F. (1979). "Hexamethylenetetramine, A Versatile Reagent in Organic Synthesis". Synthesis 1979 (3): 161–176. doi:10.1055/s-1979-28602. 
  10. Butlerow, A. (1860). "Ueber ein neues Methylenderivat" [On a new methylene derivative]. Ann. Chem. Pharm. (ใน German) 115 (3): 322–327. doi:10.1002/jlac.18601150325. 
  11. 11.0 11.1 11.2 อภัย ราษฎรวิจิตร (February 13, 2016). "เมทีนามีน (Methenamine)". หาหมอ.com. Archived from the original on November 14, 2017. สืบค้นเมื่อ April 28, 2018. 
  12. Markle, R. C. (2000). "Molecular building blocks and development strategies for molecular nanotechnology". Nanotechnology 11: 89. doi:10.1088/0957-4484/11/2/309. 
  13. Garcia, J. C.; Justo, J. F.; Machado, W. V. M.; Assali, L. V. C. (2009). "Functionalized adamantane: building blocks for nanostructure self-assembly". Phys. Rev. B 80: 125421. doi:10.1103/PhysRevB.80.125421. 
  14. 14.0 14.1 Heathcote, Reginald St. A. (1935). "HEXAMINE AS AN URINARY ANTISEPTIC: I. ITS RATE OF HYDROLYSIS AT DIFFERENT HYDROGEN ION CONCENTRATIONS. II. ITS ANTISEPTIC POWER AGAINST VARIOUS BACTERIA IN URINE". British Journal of Urology 7 (1): 9–32. ISSN 0007-1331. doi:10.1111/j.1464-410X.1935.tb11265.x. 
  15. 15.0 15.1 15.2 Elliot (1913). "On Urinary Antiseptics". British Medical Journal 98: 685–686. 
  16. Diller, Werner F. (1980). "The methenamine misunderstanding in the therapy of phosgene poisoning (review article)". Archives of Toxicology 46 (3-4): 199–206. ISSN 0340-5761. doi:10.1007/BF00310435. 
  17. "Methenamine mandelate, USP". Edenbridge Pharmaceuticals. 
  18. Australia New Zealand Food Standards Code"Standard 1.2.4 - Labelling of ingredients". สืบค้นเมื่อ 2011-10-27. 
  19. Allen, C. F. H.; Leubne, G. W. (1951). "Syringic Aldehyde". Organic Syntheses 31: 92. doi:10.15227/orgsyn.031.0092. 
  20. Wiberg, K. B. (1963). "2-Thiophenaldehyde". Organic Syntheses. doi:10.15227/orgsyn.000.0000. ; Collective Volume 3, p. 811 
  21. Bottini, A. T.; Dev, V.; Klinck, J. (1963). "2-Bromoallylamine". Organic Syntheses 43: 6. doi:10.15227/orgsyn.043.0006. 
  22. Luo, K.-M.; Lin, S.-H.; Chang, J.-G.; Huang, T.-H. (2002), "Evaluations of kinetic parameters and critical runaway conditions in the reaction system of hexamine-nitric acid to produce RDX in a non-isothermal batch reactor", Journal of Loss Prevention in the Process Industries 15 (2): 119–127, doi:10.1016/S0950-4230(01)00027-4.