ธรณีกาล

จากวิกิพีเดีย สารานุกรมเสรี
มาตราธรณีกาลแสดงตามสัดส่วนของบรมยุค/หินบรมยุคและมหายุค/หินมหายุค โดยซีโนสั้นมาจากซีโนโซอิก นอกจากนี้ยังแสดงเหตุการณ์สำคัญบางอย่างในประวัติศาสตร์โลกและวิวัฒนาการของสิ่งมีชีวิต

มาตราธรณีกาล (อังกฤษ: geologic time scale หรือ geological time scale ย่อว่า GTS) เป็นการแสดงเวลาโดยอ้างอิงจากบันทึกทางธรณีวิทยาของโลก เป็นระบบของการหาอายุตามลำดับเวลาที่ใช้การลำดับชั้นหินตามอายุกาล (กระบวนการหาความสัมพันธ์ระหว่างชั้นหินกับเวลา) และธรณีกาลวิทยา (แขนงในธรณีวิทยาที่มีจุดมุ่งหมายในการกำหนดอายุหิน) ซึ่งถูกใช้เป็นหลักโดยนักวิทยาศาสตร์โลก (ได้แก่ นักธรณีวิทยา นักบรรพชีวินวิทยา นักธรณีฟิสิกส์ นักธรณีเคมี และ นักภูมิอากาศบรรพกาลวิทยา) เพื่ออธิบายการวัดเวลาและความสัมพันธ์ของเหตุการณ์ในทางธรณีประวัติ โดยมาตราธรณีกาลได้ถูกพัฒนาผ่านการศึกษาชั้นหินและการสังเกตและความสัมพันธ์ของชั้นหินกับการระบุคุณสมบัติ เช่น วิทยาหิน สมบัติทางแม่เหล็กบรรพกาล และ ซากดึกดำบรรพ์ คำจำกัดความของหน่วยมาตรฐานสากลของธรณีกาลอยู่ภายใต้ความรับผิดชอบของคณะกรรมาธิการการลำดับชั้นหินสากล (ICS) ซึ่งเป็นองค์กรประกอบของสหพันธ์วิทยาศาสตร์ธรณีวิทยาสากล (IUGS) อันมีวัตถุประสงค์หลัก[1] เพื่อกำหนดหน่วยลำดับชั้นหินตามอายุกาลโลกในแผนภูมิการลำดับชั้นหินตามอายุกาลสากล (ICC)[2] ที่ถูกนำมาใช้ในการแบ่งมาตราธรณีกาล ส่วนการแบ่งย่อยลำดับชั้นหินตามอายุกาลจะถูกใช้เพื่อกำหนดหน่วยทางธรณีกาลวิทยา[2]

อย่างไรก็ตาม ศัพท์ระดับภูมิภาคบางคำยังคงมีการใช้อยู่[3] ดังนั้นตารางของธรณีกาลดังปรากฏในบทความนี้จะสอดคล้องกับการตั้งชื่อ อายุ และ รหัสสีซึ่งได้กำหนดไว้เป็นมาตรฐานโดยคณะกรรมาธิการการลำดับชั้นหินสากลในมาตราธรณีกาลสากล[1][4]

หลักการ[แก้]

มาตราธรณีกาลเป็นวิธีหนึ่งในการแสดงห้วงเวลาลึกตามเหตุการณ์ที่เกิดขึ้นตลอดประวัติศาสตร์ของโลก ซึ่งกินเวลาประมาณ 4.54 ± 0.05 พันล้านปี[5] ชั้นหินนั้นถูกจัดเรียงตามลำดับเวลา และตามลำดับของเวลา โดยสังเกตการเปลี่ยนแปลงขั้นพื้นฐานในลำดับชั้นหินที่สอดคล้องกับเหตุการณ์ทางธรณีวิทยาหรือบรรพชีวินวิทยาที่สำคัญ ตัวอย่างเช่น เหตุการณ์การสูญพันธุ์ยุคครีเทเชียส–พาลีโอจีน ถูกกำหนดเป็นขอบล่างของหินยุค/ยุคพาลีโอจีน จึงถือเป็นขอบเขตระหว่างหินยุค/ยุคครีเทเชียสและพาลีโอจีน สำหรับการแบ่งก่อนยุคไครโอเจเนียนจะใช้ขอบเขคที่เป็นตัวเลขโดยไม่มีเกณฑ์ (การกำหนดอายุลำดับชั้นหินมาตรฐานโลก; GSSAs) ในการแบ่งธรณีกาล อย่างไรก็ตาม มีการเสนอให้ใช้หินในการแบ่งดังกล่าวเพื่อให้เข้ากับการแบ่งอื่นยิ่งขึ้น[6][3]

ในอดีต มีการใช้มาตราธรณีกาลระดับภูมิภาค[3] เนื่องจากความแตกต่างทางการลำดับชั้นหินตามลักษณะหินและการลำดับชั้นหินตามชีวภาพในหินเทียบเท่าต่าง ๆ ทั่วโลก โดยคณะกรรมาธิการการลำดับชั้นหินสากลได้ทำงานมาเป็นเวลายาวนานในการประนีประนอมความขัดแย้งทางศัพทวิทยา โดยการสร้างมาตรฐานที่มีนัยสำคัญทั่วโลก และระบุแนวชั้นของการลำดับชั้นหินที่สามารถนำมาใช้กำหนดขอบล่างของหน่วยลำดับชั้นหินตามอายุกาล การกำหนดหน่วยลำดับชั้นหินตามอายุกาลในลักษณะดังกล่าวช่วยให้สามารถใช้ระบบการตั้งชื่อที่เป็นมาตรฐานสากลได้ โดยมี ICC เป็นสิ่งแสดงถึงความพยายามอย่างต่อเนื่องนี้

ความสัมพันธ์สัมพัทธ์ของหินในการกำหนดตำแหน่งลำดับชั้นหินตามอายุกาล จะใช้หลักซ้อนทับ ดังนี้

  • การซ้อนทับ คือ ชั้นของหินที่ใหม่กว่าจะวางตัวอยู่เหนือชั้นของหินที่เก่ากว่า เว้นแต่ลำดับการวางตัวทับนั้นจะเกิดการพลิกกับด้าน
  • แนวชั้น คือ ชั้นของหินทุกชั้นจะมีแนวในการวางตัวดั้งเดิมเป็นแนวนอน[note 1]
  • ความต่อเนื่องในด้านข้าง คือ ชั้นของหินที่มีการทับถมกันดั้งเดิมจะมีการแผ่ขยายออกไปในด้านข้างทุกด้านจนบางลงหรือถูกขั้นออกโดยชั้นหินอื่น
  • ความต่อเนื่องทางชีวภาพ (ถ้าสามารถนำมาใช้ได้) คือ ชั้นหินแต่ละชั้นที่เรียงต่อเนื่องกันจะมีชุดของซากดึกดำบรรพ์ที่โดดเด่น ซึ่งช่วยให้เกิดความสัมพันธ์ระหว่างชั้นหินได้ แม้ว่าแนวชั้นระหว่างชั้นหินทั้งสองนั้นจะไม่ต่อเนื่องกันก็ตาม
  • ความสัมพันธ์แบบตัดข้าง คือ รูปแบบของหินที่ตัดผ่านหินอื่นจะเป็นชั้นหินที่มีอายุน้อยกว่าชั้นหินที่ถูกตัดผ่านเสมอ
  • การรวม คือ ชิ้นส่วนขนาดเล็กของหินชนิดหนึ่งแต่ฝังตัวอยู่ภายในหินชนิดที่สองจะต้องก่อตัวขึ้นก่อนเสมอ ซึ่งหินที่สองก่อตัวขึ้นก็ได้รวมเอาหินแรกเข้าไป
  • ความสัมพันธ์ของรอยชั้นไม่ต่อเนื่อง คือ ลักษณะทางธรณีวิทยาที่แสดงถึงช่วงของการกร่อนหรือการไม่ทับถม อันแสดงถึงหินที่ไม่ทับถมตัวอย่างต่อเนื่อง

ศัพทวิทยา[แก้]

มาตราธรณีกาลแบ่งออกเป็นหน่วยลำดับชั้นหินตามอายุกาลและหน่วยทางธรณีกาลวิทยาที่สอดคล้องกัน เหล่านี้จะปรากฏอยู่ในแผนภูมิการลำดับชั้นหินตามอายุกาลสากลซึ่งเผยแพร่โดยคณะกรรมาธิการการลำดับชั้นหินสากล ซึ่งยังคงมีการใช้ศัพท์ระดับภูมิภาคอยู่บ้างในบางพื้นที่

การลำดับชั้นหินตามอายุกาล เป็นองค์ประกอบของการลำดับชั้นหินที่เกี่ยวข้องกับความสัมพันธ์ระหว่างหินและการวัดสัมพัทธ์ทางธรณีกาล[7] เป็นกระบวนการที่มีการกำหนดชั้นที่แตกต่างระหว่างแนวชั้นทางการลำดับชั้นหินที่ถูกกำหนดไว้ เพื่อแสดงถึงช่วงเวลาสัมพัทธ์ของธรณีกาล

หน่วยลำดับชั้นหินตามอายุกาล เป็นตัวหินทั้งแบบเป็นชั้นหรือไม่เป็นชั้น ซึ่งถูกกำหนดไว้ระหว่างแนวชั้นทางการลำดับชั้นหินที่ระบุไว้ ซึ่งแสดงถึงช่วงเวลาในธรณีกาล หินทั้งหมดนั้นรวมขึ้นเป็นตัวแทนของช่วงเวลาที่เจาะจงทางธรณีกาลและเฉพาะช่วงเวลาใดช่วงเวลาหนึ่งเท่านั้น[7] โดยมีหินบรมบุค (eonothem) หินมหายุค (erathem) หินยุค (system) หินสมัย (series) หินกึ่งสมัย (subseries) หินช่วงอายุ (stage) และ หินกึ่งช่วงอายุ (substage) เป็นหน่วยตามลำดับของหน่วยลำดับชั้นหินตามอายุกาล[7] ธรณีกาลวิทยา เป็นสาขาหนึ่งของธรณีวิทยาที่มีจุดมุ่งหมายในการกำหนดอายุของหิน ซากดึกดำบรรพ์ และ ตะกอน ไม่ว่าจะโดยวิธีสัมบูรณ์ (เช่น การหาอายุสัมบูรณ์) หรือวิธีสัมพัทธ์ (เช่น ตำแหน่งทางการลำดับชั้นหิน ภาวะแม่เหล็กบรรพกาล สัดส่วนไอโซโทปเสถียร)[8]

หน่วยธรณีกาลวิทยา เป็นการแบ่งย่อยของธรณีกาล เป็นการแสดงตัวเลขของสมบัติที่เป็นนามธรรม (เวลา)[8] โดยมี บรมยุค (eon) มหายุค (era) ยุค (period) สมัย (epoch) กึ่งสมัย (subepoch) ช่วงอายุ (age) และ กึ่งช่วงอายุ (subage) เป็นหน่วยตามลำดับทางธรณีกาลวิทยา[7] การลำดับเวลาธรณี เป็นสาขาหนึ่งของธรณีกาลวิทยาที่คำนวณเวลาทางธรณีกาลออกมาเป็นตัวเลข[8]

จุดและส่วนชั้นหินแบบฉบับขอบเขตทั่วโลก (GSSP) เป็นจุดอ้างอิงที่ตกลงกันไว้ในระดับสากลในส่วนการลำดับชั้นหิน ซึ่งเป็นตัวกำหนดขอบล่างของหินช่วงอายุในมาตราธรณีกาล[9] (และล่าสุดถูกใช้เพื่อกำหนดฐานของหินยุคด้วย)[10]

การกำหนดอายุลำดับชั้นหินมาตรฐานโลก (GSSA)[11] เป็นจุดอ้างอิงตามลำดับเวลาที่เป็นตัวเลขเท่านั้น ซึ่งใช้ในการกำหนดฐานของหน่วยธรณีกาลวิทยาในช่วงก่อนยุคไครโอเจเนียน โดยจุดเหล่านี้ถูกกำหนดขึ้นโดยไม่มีเกณฑ์ในการคัดเลือกตายตัว[7] ใช้ในกรณีที่ยังไม่มีการกำหนด GSSPs ซึ่งปัจจุบันการวิจัยกำลังดำเนินอยู่เพื่อระบุ GSSP สำหรับทุกหน่วยที่ยังคงใช้ GSSA เป็นฐานในปัจจุบัน

การแสดงตัวเลข (การวัดเวลาธรณี) ของหน่วยธรณีกาลวิทยาสามารถเปลี่ยนแปลงได้และบางครั้งมีการเปลี่ยนแปลงอย่างบ่อยครั้งเมื่อธรณีกาลวิทยานั้นปรับแต่งการวัดเวลาธรณี ขณะที่หน่วยลำดับชั้นหินตามอายุกาลที่เทียบเท่านั้นจะยังคงเดิม ซึ่งมีการแก้ไขที่น้อยกว่า ตัวอย่างเช่น ต้นปี พ.ศ. 2565 ขอบเขตระหว่างยุคอีดีแอคารันและยุคแคมเบรียน (หน่วยธรณีกาลวิทยา) ถูกแก้ไขจาก 541 ล้านปีก่อนไปเป็น 538.8 ล้านปีก่อน เว้นแต่หินจำกัดความของขอบเขต (GSSP) ที่ฐานของหินยุคแคมเบรียนนั้นยังคงเดิม ด้วยเหตุนี้ ขอบเขตระหว่างหินยุคอีดีแอคารันและหินยุคแคมเบรียน (หน่วยลำดับชั้นหินตามอายุกาล) จึงไม่ได้เปลี่ยนแปลง มีเพียงแต่การวัดเวลาธรณีเท่านั้นที่มีการปรับแก้

ค่าตัวเลขบนแผนภูมิ ICC นั้นถูกแสดงอยู่ในหน่วยล้านปีก่อน (megaannum หรือย่อว่า Ma) เช่น ขอบล่างของยุคจูแรสซิกนั้นอยู่ที่ 201.3 ± 0.2 ล้านปีก่อน หมายความว่ายุคจูแรสซิกนั้นมีขอบล่างอยู่ที่ 201,300,000 ปี และมีค่าความไม่แน่นอนอยู่ที่ 200,000 ปี ส่วนหน่วยเอสไออี่นที่ใช้กันทั่วไปโดยนักธรณีวิทยา ได้แก่ พันล้านปี (gigaannum หรือย่อว่า Ga) และ พันปีก่อน (kiloannum หรือย่อว่า ka) ซึ่งในภายหลังมักแสดงเป็นหน่วยที่ปรับเทียบแล้ว (ก่อนปัจจุบัน)

การแบ่งย่อยของธรณีกาล[แก้]

บรมยุค (eon) เป็นหน่วยธรณีกาลวิทยาทางการที่ใหญ่ที่สุดและเทียบเท่ากับหินบรมยุค (eonothem) ในการลำดับชั้นหินตามอายุกาล[12] ณ เมษายน พ.ศ. 2565 มีบรมยุค/หินบรมยุคทางการที่ถูกกำหนดไว้ทั้งสิ้นสามช่วง ได้แก่ อาร์เคียน โพรเทอโรโซอิก และ ฟาเนอโรโซอิก[2] ส่วนเฮเดียนเป็นบรมยุค/หินบรมยุคที่ไม่เป็นทางการ แต่เป็นที่นิยมใช้โดยทั่วไป[12]

มหายุค (era) เป็นหน่วยธรณีกาลวิทยาที่ใหญ่ที่สุดเป็นอันดับที่สองและเทียบเท่ากับหินมหายุค (erathem) ในการลำดับชั้นหินตามอายุกาล[7][12] ณ เมษายน พ.ศ. 2565 มีมหายุค/หินมหายุคทางการที่ถูกกำหนดไว้ทั้งสิ้นสิบช่วง[2]

ยุค (period) เป็นหน่วยธรณีกาลวิทยาที่ใหญ่รองจาก มหายุค แต่เหนือกว่า สมัย เทียบเท่ากับหินยุค (system) ในการลำดับชั้นหินตามอายุกาล[7][12]ข้อมูลเมื่อ เมษายน 2022 ณ เมษายน พ.ศ. 2565 มีมหายุค/หินมหายุคทางการที่ถูกกำหนดไว้ทั้งสิ้น 22 ช่วง[2] ยกเว้น 2 กึ่งยุค/หินกึ่งยุคซึ่งใช้เป็นหน่วยของยุค/หินยุคคาร์บอนิเฟอรัส[7]

สมัย (epoch) เป็นหน่วยธรณีกาลวิทยาที่เล็กที่สุดเป็นอันดับที่สอง อยู่ระหว่าง ยุค และ ช่วงอายุ เทียบเท่ากับหินสมัย (series) ในการลำดับชั้นหินตามอายุกาล[7][12] ณ เมษายน พ.ศ. 2565 มีสมัย/หินสมัยทางการที่ถูกกำหนดไว้ทั้งสิ้น 37 ช่วง กับไม่เป็นทางการอีกทั้งสิ้น 1 ช่วง นอกจากนี้ยังมี 11 กึ่งสมัย (subepoch)/หินกึ่งสมัย (subseries) ซึ่งทั้งหมดอยู่ภายในนีโอจีนและควอเทอร์นารีด้วย[2] โดยการใช้กึ่งสมัย/หินกึ่งสมัยเป็นอันดับ/หน่วยทางการในการลำดับชั้นหินตามอายุกาลสากลนั้นได้รับการอนุมัติในปี พ.ศ. 2565[13]

ช่วงอายุ (age) เป็นหน่วยธรณีกาลวิทยาที่เล็กที่สุด เทียบเท่ากับหินช่วงอายุ (stage) ในการลำดับชั้นหินตามอายุกาล[7][12] ณ เมษายน พ.ศ. 2565 มีช่วงอายุ/หินช่วงอายุทางการที่ถูกกำหนดไว้ทั้งสิ้น 96 ช่วง และไม่เป็นทางการอีก 5 ช่วง[2]

รุ่น (chron) เป็นหน่วยการลำดับเวลาธรณีทางการของสิ่งที่ไม่ได้ระบุอันดับ เทียบเท่ากับหินรุ่น (chronozone)ในการลำดับชั้นหินตามอายุกาล[7] หน่วยต่าง ๆ เหล่านี้สัมพันธ์กับหน่วยการลำดับชั้นหินตามแม่เหล็ก การลำดับชั้นหินตามลักษณะหิน หรือ การลำดับชั้นหินตามชีวภาพ เนื่องจากอ้างอิงตามหน่วยการลำดับชั้นหินหรือลักษณะทางธรณีวิทยาที่ถูกกำหนดไว้ก่อนหน้านี้

ตอนต้น (early) และ ตอนปลาย (late) เป็นการแบ่งย่อยที่ถูกใช้ในธรณีวิทยา เทียบเท่ากับ ล่าง (lower) และ บน upper ในการลำดับชั้นหินตามอายุกาล เช่น ยุคไทรแอสซิกตอนต้น (Early Triassic Period) ซึ่งเป็นหน่วยธรณีกาลวิทยาจะเสมอด้วย หินยุคไทรแอสซิกล่าง (Lower Triassic Series) อันเป็นหน่วยการลำดับชั้นหินตามอายุกาล

ในสาระสำคัญ การกล่าวว่าหินเป็นตัวแทนของหน่วยลำดับชั้นหินตามอายุกาล ที่หน่วยลำดับชั้นหินตามอายุกาลและเวลาที่หินนั้นก่อตัวขึ้นอยู่ในหน่วยธรณีกาลวิทยาเป็นความจริง เช่น หินที่เป็นตัวแทนของหินยุคไซลูเรียน "คือ" หินยุคไซลูเรียนที่ได้เกิดการทับถมตัวขึ้นในระหว่างยุคไซลูเรียน

ลำดับของหน่วยทางการของมาตราธรณีกาล (ใหญ่ไปเล็ก)
หน่วยลำดับชั้นหินตามอายุกาล (ชั้นหิน) หน่วยธรณีกาลวิทยา (เวลา) ช่วงเวลา[note 2]
หินบรมยุค (Eonothem) บรมยุค (Eon) หลายร้อยล้านปี
หินมหายุค (Erathem) มหายุค (Era) สิบถึงร้อยล้านปี
หินยุค (System) ยุค (Period) ล้านถึงสิบล้านปี
หินสมัย (Series) สมัย (Epoch) แสนถึงสิบล้านปี
หินกึ่งสมัย (Subseries) กึ่งสมัย (Subepoch) พันถึงล้านปี
หินช่วงอายุ (Stage) ช่วงอายุ (Age) พันถึงล้านปี

การตั้งชื่อธรณีกาล[แก้]

ชื่อของหน่วยธรณีกาลถูกกำหนดไว้สำหรับหน่วยลำดับชั้นหินตามอายุกาลที่มีหน่วยธรณีกาลวิทยาอันสอดคล้องกันและใช้ชื่อร่วมกัน เพียงแค่เปลี่ยนคำนำหน้า (เช่น หินบรมยุคฟาเนอโรโซอิก เป็น บรมยุคฟาเนอโรโซอิก) ชื่อของหินมหายุคในฟาเนอโรโซอิกนั้น ถูกเลือกให้สะท้อนถึงการเปลี่ยนแปลงที่สำคัญของประวัติศาสตร์สิ่งมีชีวิตบนโลก นั่นคือ พาลีโอโซอิก (สิ่งมีชีวิตเก่า) มีโซโซอิก (สิ่งมีชีวิตกลาง) และ ซีโนโซอิก (สิ่งมีชีวิตใหม่) ชื่อของหินยุคมีแหล่งที่มาที่หลากหลาย บางส่วนจะชี้ให้เห็นถึงตำแหน่งทางการลำดับเวลา (เช่น พาลีโอจีน) ขณะที่ชื่ออื่นนั้นถูกตั้งตามแหล่งกำเนิดด้านวิทยาหิน (เช่น ครีเทเชียส) ภูมิศาสตร์ (เช่น เพอร์เมียน) หรือเกี่ยวกับชนเผ่า (เช่น ออร์โดวิเชียน) หินสมัยและหินกึ่งสมัยส่วนมากที่รู้จักกันในปัจจุบันแล้ว ส่วนมากจะถูกตั้งชื่อตามตำแหน่งภายในหินยุค/หินสมัย (ตอนต้น/ตอนกลาง/ตอนปลาย) อย่างไรก็ตาม คณะกรรมาธิการการลำดับชั้นหินสากลสนับสนุนให้หินสมัยและหินกึ่งสมัยใหม่ทั้งหมดได้รับการตั้งชื่อตามลักษณะทางภูมิศาสตร์ ในบริเวณใกล้เคียงกับชั้นหินแบบฉบับหรือที่ตั้งแบบฉบับของหินสมัยหรือหินกึ่งสมัยนั้น นอกจากนี้ ชื่อของหินช่วงอายุควรมาจากที่มาทางลักษณะทางภูมิศาสตร์ในที่ตั้งแบบฉบับของชั้นหินแบบฉบับของหินช่วงอายุด้วยเช่นกัน[7]

เวลาก่อนแคมเบรียนมักถูกเรียกอย่างไม่เป็นทางการว่า พรีแคมเบรียน (pre-Cambrian หรือ Precambrian) ซึ่งจัดเป็นอภิมหาบรมยุค (Supereon)[6][note 3]

ช่วงเวลาและศัพทมูลวิทยาของชื่อหินบรมยุค/บรมยุค
ชื่อ ช่วงเวลา นิรุกติศาสตร์ของชื่อ
ฟาเนอโรโซอิก 541 ถึง 0 ล้านปีก่อน มาจากคำในภาษากรีกว่า φανερός (phanerós, ฟาเนโรส) หมายถึง 'ชัดเจน' หรือ 'มากมาย' และ ζωή (zoḯ, โซอี) หมายถึง 'สิ่งมีชีวิต'
โพรเทอโรโซอิก 2,500 ถึง 541 ล้านปีก่อน มาจากคำในภาษากรีกว่า πρότερος (próteros, โปรเตโรส) หมายถึง 'อดีต' หรือ 'ก่อนหน้า' และ ζωή (zoḯ, โซอี) หมายถึง 'สิ่งมีชีวิต'
อาร์เคียน 4,000 ถึง 2,500 ล้านปีก่อน มาจากคำในภาษากรีกว่า αρχή (arche, อาร์คี) หมายถึง 'จุดเริ่มต้น, ต้นกำเนิด'
เฮเดียน ~4,600 ถึง 4,000 ล้านปีก่อน มาจากเฮดีส เทพในปรำปรากรีก
ช่วงเวลาและศัพทมูลวิทยาของชื่อหินมหายุค/มหายุค
ชื่อ ช่วงเวลา นิรุกติศาสตร์ของชื่อ
ซีโนโซอิก 66 ถึง 0 ล้านปีก่อน มาจากคำในภาษากรีกว่า καινός (kainós, เคโนส) หมายถึง 'ใหม่' และ ζωή (zoḯ, โซอี) หมายถึง 'สิ่งมีชีวิต'
มีโซโซอิก 251.9 ถึง 66 ล้านปีก่อน มาจากคำในภาษากรีกว่า μέσο (méso, เมโซ) หมายถึง 'กลาง' และ ζωή (zoḯ, โซอี) หมายถึง 'สิ่งมีชีวิต'
พาลีโอโซอิก 541 ถึง 251.9 ล้านปีก่อน มาจากคำในภาษากรีกว่า παλιός (palaiós, ปัลโลส) หมายถึง 'เก่า' และ ζωή (zoḯ, โซอี) หมายถึง 'สิ่งมีชีวิต'
นีโอโพรเทอโรโซอิก 1,000 ถึง 541 ล้านปีก่อน มาจากคำในภาษากรีกว่า νέος (néos, เนโอส) หมายถึง 'ใหม่' หรือ 'เยาว์', πρότερος (próteros, โปรเตโรส) หมายถึง 'อดีต' หรือ 'ก่อนหน้า' และ ζωή (zoḯ, โซอี) หมายถึง 'สิ่งมีชีวิต'
มีโซโพรเทอโรโซอิก 1,600 ถึง 1,000 ล้านปีก่อน มาจากคำในภาษากรีกว่า μέσο (méso, เมโซ) หมายถึง 'กลาง', πρότερος (próteros, โปรเตโรส) หมายถึง 'อดีต' หรือ 'ก่อนหน้า' และ ζωή (zoḯ, โซอี) หมายถึง 'สิ่งมีชีวิต'
แพลีโอโพรเทอโรโซอิก 2,500 ถึง 1,600 ล้านปีก่อน มาจากคำในภาษากรีกว่า παλιός (palaiós, ปัลโลส) หมายถึง 'เก่า', πρότερος (próteros, โปรเตโรส) หมายถึง 'อดีต' หรือ 'ก่อนหน้า' และ ζωή (zoḯ, โซอี) หมายถึง 'สิ่งมีชีวิต'
นีโออาร์เคียน 2,800 ถึง 2,500 ล้านปีก่อน มาจากคำในภาษากรีกว่า νέος (néos, เนโอส) หมายถึง 'ใหม่' หรือ 'เยาว์' และ ἀρχαῖος (arkhaîos, อาร์เคโอส) หมายถึง 'โบราณ'
มีโซอาร์เคียน 3,200 ถึง 2,800 ล้านปีก่อน มาจากคำในภาษากรีกว่า μέσο (méso, เมโซ) หมายถึง 'กลาง' และ ἀρχαῖος (arkhaîos, อาร์เคโอส) หมายถึง 'โบราณ'
พาลีโออาร์เคียน 3,600 ถึง 3,200 ล้านปีก่อน มาจากคำในภาษากรีกว่า παλιός (palaiós, ปัลโลส) หมายถึง 'เก่า' และ ἀρχαῖος (arkhaîos, อาร์เคโอส) หมายถึง 'โบราณ'
อีโออาร์เคียน 4,000 ถึง 3,600 ล้านปีก่อน มาจากคำในภาษากรีกว่า Ηώς (Iós, อีโอส) หมายถึง 'รุ่งอรุณ' และ ἀρχαῖος (arkhaîos, อาร์เคโอส) หมายถึง 'โบราณ'
ช่วงเวลาและศัพทมูลวิทยาของชื่อหินยุค/ยุค
ชื่อ ช่วงเวลา นิรุกติศาสตร์ของชื่อ
ควอเทอร์นารี 2.6 ถึง 0 ล้านปีก่อน เสนอครั้งแรกโดยจูล เดนวยเยในปี พ.ศ. 2372 สำหรับตะกอนในแอ่งแซนของประเทศฝรั่งเศสที่ปรากฏใหม่กว่าหินเทอร์เทียรี[note 4][14]
นีโอจีน 23 ถึง 2.6 ล้านปีก่อน มาจากคำในภาษากรีกว่า νέος (néos, เนโอส) หมายถึง 'ใหม่' หรือ 'เยาว์' และ γενεά (geneá, เยเนอา) หมายถึง 'การกำเนิด' หรือ 'การเกิด'
พาลีโอจีน 66 ถึง 23 ล้านปีก่อน มาจากคำในภาษากรีกว่า παλιός (palaiós, ปัลโลส) หมายถึง 'เก่า' และ γενεά (geneá, เยเนอา) หมายถึง 'การกำเนิด' หรือ 'การเกิด'
ครีเทเชียส 145 ถึง 66 ล้านปีก่อน มาจาก Terrain Crétacé (เทอร็อง เครตาเซ) ถูกใช้เมื่อปี ค.ศ. 1822 โดยฌอง แบ็บทิสต์ ฌูเลียง โดมาลียูส ดาลัวในการอ้างอิงถึงชั้นกว้างของชอล์กภายในแอ่งปารีส[15] โดยมีรากมาจากภาษาละติน crēta (เครตา) หมายถึง "ชอล์ก"
จูแรสซิก 201.3 ถึง 145 ล้านปีก่อน ตั้งชื่อตามภูเขาจูลา ใช้เป็นครั้งแรกโดยอเล็คซันเดอร์ ฟ็อน ฮุมบ็อลท์ในวลีว่า 'Jura Kalkstein' (หินปูนจูลา) ในปี ค.ศ. 1799[16] ส่วนอเล็กซองเดรอะ บงนีอาต์เป็นบุคคลแรกที่ตีพิมพ์คำว่า Jurassic ในปี ค.ศ. 1829[17][18]
ไทรแอสซิก 251.9 ถึง 201.3 ล้านปีก่อน จากคำว่า Trias (ทรีอัส) ของฟรีดริช เอากุสต์ ฟ็อน อัลแบร์ทีในการอ้างอิงถึงการก่อตัวสามชุดในตอนใต้ของประเทศเยอรมนี
เพอร์เมียน 298.9 ถึง 251.9 ล้านปีก่อน ตั้งตามภูมิภาคในประวัติศาสตร์ นั่นคือ เขตปกครองเปียร์ม จักรวรรดิรัสเซีย[19]
คาร์บอนิเฟอรัส 358.9 ถึง 298.9 ล้านปีก่อน หมายถึง 'การแบกถ่านหิน' มาจากภาษาละตินว่า carbō (คาร์โบ) หมายถึง ถ่าน และ ferō (เฟโร) หมายถึง การแบก, การอุ้ม[20]
ดีโวเนียน 419.2 ถึง 358.9 ล้านปีก่อน ตั้งตามมณฑลเดวอน ประเทศอังกฤษ[21]
ไซลูเรียน 443.8 ถึง 419.2 ล้านปีก่อน ตั้งตามเผ่าไซลูริสของชาวเคลต์[22]
ออร์โดวิเชียน 485.4 ถึง 443.8 ล้านปีก่อน ตั้งตามเผ่าออร์โดวิซของชาวเคลต์[23][24]
แคมเบรียน 541 ถึง 485.4 ล้านปีก่อน ตั้งตามแคมเบรีย ชื่อละตินของ Cymru หรือประเทศเวลส์[25]
อีดีแอคารัน 635 ถึง 541 ล้านปีก่อน ตั้งตามเขาอีดีแอคารา โดยคำว่าอีดีแอคาราอาจเพี้ยนมาจากคำว่า 'ยาตา ตาการ์รา' ในภาษาคูยานี หมายถึง พื้นแข็งหรือเป็นหิน[26][27]
ไครโอเจเนียน 720 ถึง 635 ล้านปีก่อน มาจากคำในภาษากรีกว่า κρύος (krýos, ครีโอส) หมายถึง 'หนาว' และ γενεά (geneá, เยเนอา) หมายถึง 'การกำเนิด' หรือ 'การเกิด'[3]
โทเนียน 1,000 ถึง 720 ล้านปีก่อน มาจากคำในภาษากรีกว่า τόνος (tónos, โตโนส) หมายถึง 'ยืด'[3]
สเทเนียน 1,200 ถึง 1,000 ล้านปีก่อน มาจากคำในภาษากรีกว่า στενός (stenós, สเตโนส) หมายถึง 'แคบ'[3]
เอกเทเซียน 1,400 ถึง 1,200 ล้านปีก่อน มาจากคำในภาษากรีกว่า ἔκτᾰσῐς (éktasis, เอ็กตาซิส) หมายถึง 'การขยาย'[3]
คาลิมเมียน 1,600 ถึง 1,400 ล้านปีก่อน มาจากคำในภาษากรีกว่า κάλυμμᾰ (kálumma, กาลิมมา) หมายถึง 'บดบัง'[3]
สตาทีเรียน 1,800 ถึง 1,600 ล้านปีก่อน มาจากคำในภาษากรีกว่า σταθερός (statherós, สตาเทโรส) หมายถึง 'มั่นคง'[3]
ออโรซีเรียน 2,050 ถึง 1,800 ล้านปีก่อน มาจากคำในภาษากรีกว่า ὀροσειρά (oroseirá, โอโรเซรา) หมายถึง 'เทือกเขา'[3]
ไรเอเซียน 2,300 ถึง 2,050 ล้านปีก่อน มาจากคำในภาษากรีกว่า ῥύαξ (rhýax, รีอากซ์) หมายถึง 'ธารลาวา'[3]
ไซดีเรียน 2,500 ถึง 2,300 ล้านปีก่อน มาจากคำในภาษากรีกว่า σίδηρος (sídiros, ซีดีโรส) หมายถึง 'เหล็ก'[3]

ประวัติของมาตราธรณีกาล[แก้]

วังวนธรณีกาล แสดงให้เห็นประวัติศาสตร์อันยาวนาน 4.6 พันล้านปีของโลกตั้งแต่อภิมหาบรมยุคพรีแคมเบรียนจนถึงปัจจุบัน

ประวัติช่วงต้น[แก้]

ในสมัยกรีซโบราณ แอริสตอเติล (384–322 BCE) ได้สังเกตว่ามีซากดึกดำบรรพ์ของเปลือกหอยในหิน ซึ่งคล้ายกันกับที่พบได้ตามชายหาด เขาได้อนุมานว่าซากดึกดำบรรพ์ในหินเหล่านั้นเกิดขึ้นจากสิ่งมีขีวิต และเขาให้เหตผลว่า ตำแหน่งของแผ่นดินและทะเลนั้นมีการเปลี่ยนแปลงไปเมื่อนานมาแล้ว เลโอนาร์โด ดา วินชี (ค.ศ. 1452–1519) เห็นด้วยกับการตีความของแอริสตอเดิลที่ว่าซากดึกดำบรรพ์นั้นเป็นตัวแทนของสิ่งมีชีวิตโบราณที่เหลืออยู่[28]

ช่วงคริสต์ศตวรรษที่ 11 แอวิเซนนา (เสียชีวิต ค.ศ. 1037) นักปราชญ์ชาวเปอร์เซีย และอัลแบร์ตุส มาญุส (เสียชีวิต ค.ศ. 1280) มุขนายกแห่งคณะดอมินิกันในศาสนาคริสต์ ได้ขยายความคำอธิบายของแอริสตอเติลไปเป็นทฤษฏีของเหลวกลายเป็นหิน[29] นอกจากนี้แอวิเซนนายังได้เสนอหลักการข้อหนึ่งที่อยู่ภายใต้มาตรธรณีกาลด้วย นั่นคือ กฎการวางซ้อนของชั้นหิน ในขณะที่กล่าวถึงการกำเนิดภูเขาในหนังสือ The Book of Healing (ค.ศ. 1027)[30] และยังมีเฉิน กัว (ค.ศ. 1031–1095) นักธรรมชาติวิทยาชาวจีน ซึ่งเป็นผู้ค้นพบแนวคิดของ "ห้วงเวลาลึก" ด้วย[31]

การจัดตั้งหลักการเบื้องต้น[แก้]

ในช่วงปลายคริสต์ตวรรษที่ 17 นิโกลัส สตีโน (ค.ศ. 1638–1686) ได้กล่าวถึงหลักการพื้นฐานของมาตรธรณีกาล โดยสตีโนแย้งว่าชั้นหินนั้นถูกวางเรียงต่อ ๆ กันและแต่ละชั้นแสดงถึง "ส่วน" ของเวลา นอกจากนี้ เขายังได้ตั้งกฎการวางซ้อนขึ้น ซึ่งระบุว่าชั้นหินหนึ่ง ๆ อาจมีอายุมากกว่าชั้นที่อยู่ด้านบนและมีอายุน้อยกว่าชั้นที่อยู่ด้านล่างชั้นดังกล่าว แม้ว่าหลักการของสตีโนนั้นจะเรียบง่าย แต่การนำไปพิสูจน์นั้นกลับมีความท้าทาย นอกจากนี้ แนวคิดของสตีโนยังนำไปสู่แนวคิดที่สำคัญอื่น ๆ ที่นักธรณีวิทยาใช้ในปัจจุบันด้วย เช่น การหาอายุสัมพัทธ์ ซึ่งตลอดช่วงคริสต์ศตวรรษที่ 18 นั้น นักธรณีวิทยาตระหนักได้ว่า

  1. ลำดับของชั้นหินมักจะถูกกร่อน ถูกบิดให้ผิดรูป ถูกทำให้เอียง หรือแม้แต่เกิดกลับด้านหลังจากการถูกทับถมแล้ว
  2. ชั้นหินที่วางตัวในเวลาเดียวกันแต่ต่างพื้นที่กัน อาจมีลักษณะที่แตกต่างกันได้อย่างสิ้นเชิง
  3. ชั้นหินของพื้นที่หนึ่ง ๆ เป็นเพียงส่วนเดียวของประวัติอันยาวนานของโลกเท่านั้น

ทฤษฎีเนปจูนิสต์ที่เป็นที่นิยมในเวลานั้น (ทฤษฎีได้รับการอธิบายโดยอับราฮัม ก็อทท์ลบ เวร์เนร์ (ค.ศ. 1749–1817) ในช่วงปลายศตวรรษที่ 18) เสนอว่า หินทั้งหมดนั้นเกิดการตะกอนจากมหาอุทกภัยครั้งใหญ่เพียงครั้งเดียว ก่อนที่การเปลี่ยนแปลงทางความคิดได้เกิดขึ้นครั้งใหญ่เมื่อเจมส์ ฮุตตันได้นำเสนอ ทฤษฎีโลก หรือ การตรวจสอบกฎที่สามารถสังเกตได้จากองค์ประกอบ การยุบ และการบูรณะขึ้นของแผ่นดินบนโลก ขึ้น[32] ที่ราชสมาคมแห่งเอดินบะระในเดือนมีนาคมและเมษายน ค.ศ. 1785 โดยจอห์น แมคฟีได้ยืนยันว่า "เมื่อสิ่งต่าง ๆ ปรากฏขึ้นจากมุมมองของคริสต์ศตวรรษที่ 20 ทำให้เจมส์ ฮุตตันจากการอ่านเหล่านั้นกลายมาเป็นผู้ก่อกำเนิดธรณีวิทยาสมัยใหม่"[33]: 95–100  โดยฮุตตันเสนอว่า ภายใน [เนื้อใน] ของโลกนั้นร้อน และความร้อนนี้เป็นกลไกขับเคลื่อนการสร้างชั้นหินใหม่ขึ้น โดยแผ่นดินจะถูกก่อนไปโดยอากศและน้ำ และเกิดการทับถมเป็นชั้นในทะเล จากนั้นความร้อนก็จะรวมตะกอนเหล่านั้นให้เป็นหิน และยกให้เป็นแผ่นดินใหม่ โดยทฤษฎีนี้เรียกว่า พลูโตนิยม ซึ่งตรงกันข้ามกับทฤษฎีที่มุ่งไปที่อุทกภัยแบบเนปจูนนิยม

การประดิษฐ์มาตรธรณีกาล[แก้]

ความพยายามอย่างจริงจังครั้งแรกในการกำหนดมาตรธรณีกาลที่สามารถนำไปประยุกต์ใช้ได้ทั่วโลกนั้นเกิดขึ้นในช่วงปลายคริตส์ศตวรรษที่ 18 ผู้ที่มีอิทธิพลต่อความคิดมากที่สุดในช่วงแรก ๆ (โดยมีเวร์เนร์เป็นผู้ครองอิทธิพลเหนือบุคคลอื่น) ได้แบ่งหินของเปลือกโลกออกเป็นสี่ประเภท ได้แก่ ปฐมภูมิ (Primary) ทุติยภูมิ (Secondary) ตติยภูมิ (Tertiary) และ จตุรภูมิ (Quaternary) โดยตามทฤษฎีแล้ว หินแต่ละประเภทนั้นจะก่อตัวขึ้นในช่วงเวลาหนึ่ง ๆ ในประวัติโลก ดังนั้น อันที่จริงแล้วจึงเป็นไปได้ที่จะกล่าวถึง "ยุคเทอร์เทียรี" เช่นเดียวกับ "หินเทอร์เทียรี" โดย "ยุคตติยภูมิ" หรือ "เทอร์เทียรี" (ปัจจุบันแบ่งออกเป็นยุคพาลีโอจีนและนีโอจีน) ถูกใช้งานในฐานะชื่อของยุคทางธรณีวิทยามาจนถึงศตวรรษที่ 20 ส่วน "ยุคจตุรภูมิ" หรือ "ควอเทอร์นารี" ยังคงถูกใช้เป็นชื่อของยุคอย่างเป็นทางการจวบจนปัจจุบัน

การระบุชั้นหินโดยใช้ซากดึกดำบรรพ์ที่มีอยู่ ซึ่งถูกบุกเบิกโดยวิลเลียม สมิธ, ฌ็อฌ กูวีเย, ฌ็อง โดมาลียูส ดาลัว และอเล็กซองเดรอะ บงนีอาต์ในช่วงต้นคริสต์ศตวรรษที่ 19 ช่วยให้นักธรณีวิทยาสามารถแบ่งประวัติของโลกได้อย่างแม่นยำมากยิ่งขึ้น นอกจากนี้ยังช่วยให้นักธรณีวิทยาเชื่อมโยงชั้นหินต่าง ๆ ข้ามพรมแดนของประเทศ (หรือแม้แต่ทวีป) ได้ โดยหากชั้นหินสองสั้น (แต่ว่าอยู่ห่างไกลกัยหรือมีองค์ประกอบต่างกัน) ซึ่งมีซากดึกดำบรรพ์เหมือนกัน โอกาสที่ชั้นหินทั้งสองจะวางตัวในเวลาเดียวกันนั้นจะอยู่ในระดับดี จากการศึกษาโดยละเอียดเกี่ยวกับชั้นหินและซากดึกดำบรรพ์ในยุโรประหว่างปี ค.ศ. 1820 ถึง 1850 ทำให้เกิดของลำดับทางธรณีที่ยังใช้มาจนถึงปัจจุบันนี้

การตั้งชื่อยุค สมัย และ มหายุค[แก้]

งานเริ่มแรกในการพัฒนามาตรธรณีกาลนั้นถูกครอบงำโดยนักธรณีวิทยาชาวอังกฤษ ชื่อของยุคทางธรณีวิทยาจึงสะท้อนถึงการครอบงำนั้น โดย คำว่า "แคมเบรียน" (ชื่อโบราณของประเทศเวลส์) และ "ออร์โดวิเชียน" และ "ไซลูเรียน" ก็เป็นชื่อที่ตั้งตามเผ่าโบราณของประเทศเวลส์ เนื่องจากมีการกำหนดลำดับชั้นหินและกำหนดยุคจากประเทศเวลส์: 113–114  ส่วน "ดรโวเนียน" เป้นชื่อที่ตั้งตามเทศมณฑลเดวอนของประเทศอังกฤษ และ "คาร์บอนิเฟอรัส" มาจากคำว่า "the Coal Measures" ซึ่งเป็นคำเก่าที่ใช้โดยนักธรณีวิทยาชาวอังกฤษในชั้นหินชุดเดียวกัน ขณะที่ "เพอร์เมียน" ตั้งตามดินแดนเปียร์มของประเทศรัสเซีย เนื่องจากยุคดังกล่าวถูกกำหนดโดยใช้ชั้นหินในภูมิภาคดังกล่าวโดยรอเดอร์ริก เมอร์ชสัน นักธรณีวิทยาชาวสก็อต อย่างไรก็ตาม บางยุคก็ได้รับการตั้งชื่อโดยนักธรณีวิทยาจากประเทศอื่น เช่น "ไทรแอสซิก" ตั้งโดยฟรีดริช ฟอน อัลแบร์ที นักธรณีวิทยาชาวเยอรมัน โดยชื่อมาจากลักษณะสามชั้นที่แตกต่างกัน (ในภาษาละติน trias หมายถึง ตรีลักษณ์) กล่าวคือ ชั้นหินแดง ซึ่งถูกปิดทับด้วยชั้นหินชอล์ก และตามด้วยชั้นหินดินดานดำ ซึ่งลักษณะนี้สามารถพบได้ทั่วประเทศเยอรมนีและภูมิภาคยุโรปตะวันตกเฉียงเหนือ จึงเป็นที่มาของชื่อ 'ไทรแอส' (trias) ชื่อ "จูแรสซิก" ตั้งโดยอเล็กซองเดรอะ บงนีอาต์ นักธรณีวิทยาชาวฝรั่งเศส โดยมีที่มาจากหินปูนทะเลเป็นบริเวณกว้างของภูเขาฌูรา (Jura) ชื่อ "ครีเทเชียส" (จากภาษาละติน creta หมายถึง หินชอล์ก) เป็นยุคที่ถูกกำหนดครั้งแรกโดยฌ็อง โดมาลียูส ดาลัว นักธรณีวิทยาชาวเบลเยียมในปี พ.ศ. 2365 โดยการใช้ชั้นหินในแอ่งปารีส และได้ตั้งชื่อตามชั้นหินชอล์ก (การทับถมของแคลเซียมคาร์บอเนตที่เกิดจากเปลือกของสัตว์ทะเลไม่มีกระดูกสันหลัง) ที่กว้างขวาง ซึ่งพบได้ในภูมิภาคยุโรปตะวันตก

นักธรณีวิทยาชาวอังกฤษยังได้รับหน้าที่ในการจัดกลุ่มยุคให้เป็นมหายุคต่าง ๆ ด้วย รวมถึงการแบ่งยุคเทอร์เทียรีและควอเทอร์นารีออกเป็นสมัยต่าง ๆ ในปี พ.ศ. 2384 เจมส์ ฟิลลิปส์ ได้ตีพิมพ์มาตรธรณีกาลทั่วโลกครั้งแรกขึ้นตามประเภทของซากดึกดำบรรพ์ที่พบในแต่ละมหายุค โดยมาตรของฟิลลิปส์ช่วยทำให้คำศัพท์ เช่น พาลีโอโซอิก ("สิ่งมีชีวิตเก่า") ซึ่งเขาได้ขยายให้มันครอบคลุมเวลามากกว่าที่เคยใช้มาให้เป็นคำมาตรฐาน และยังได้คิดค้นคำว่า มีโซโซอิก ("สิ่งมีชีวิตกลาง") ขึ้นด้วย

การหาอายุของธรณีกาล[แก้]

เมื่อวิลเลียม สมิธและเซอร์ชาร์ล ไลเอลล์รู้เป็นครั้งแรกว่าชั้นหินนั้นเป็นตัวแทนของช่วงเวลาที่ต่อเนื่องกัน มาตรกาลสามารถประมาณขึ้นได้อย่างคราว ๆ ไม่แม่นยำเท่านั้น อันเนื่องมาจากค่าประมาณของอัตราการเปลี่ยนแปลงที่ไม่แน่นอน ขณะเดียวกันนักคิดได้เสนออายุของโลกเอาไว้ที่ประมาณหกพันถึงเจ็ดพันปี โดยอ้างอิงจากคัมภีร์ไบเบิล ส่วนนักธรณีวิทยาได้เสนอมาตรธรณีกาลไว้ที่หลักล้านปี และบางกลุ่มถึงกับเสนอว่าอายุของโลกนั้นเป็นอนันต์[ต้องการอ้างอิง] นักธรณีวิทยาและนักบรรพชีวินวิทยาได้สร้างตารางธรณีขึ้น โดยอิงจากตำแหน่งสัมพัทธ์ของชั้นหินและซากดึกดำบรรพ์ต่าง ๆ และประเมินมาตรกาลขึ้นจากการศึกษาอัตราการผุพังอยู่กับที่ การกร่อน การเกิดหินตะกอน และ การแข็งตัวกลายเป็นหิน จนกระทั่งมีการค้นพบกัมมันตรังสีในปี พ.ศ. 2439 และได้มีการนำมาประยุกต์ใช้ทางธรณีวิทยาด้วยการหาอายุสัมบูรณ์ในช่วงครึ่งแรกของศตวรรษที่ 20 ขณะที่อายุของชั้นหินต่าง ๆ และอายุของโลกนั้นยังคงเป็นที่ถกเถียงกันอย่างมาก

มาตรธรณีกาลแรกที่ใช้อายุสมบูรณ์ถูกตีพิมพ์ครั้งแรกในปี พ.ศ. 2456 โดยอาร์เทอร์ โฮล์ม นักธรณีวิทยาชาวอังกฤษ[34] เขาได้พัฒนาแขนงทางธรณีกาลวิทยาขึ้น และยังได้ตีพิมพ์หนังสือระดับโลก The Age of the Earth ขึ้น ซึ่งเขาได้ประมาณอายุของโลกว่ามีอายุอย่างน้อย 1.6 พันล้านปี[35]

ในความพยายามอย่างต่อเนื่องตั้งแต่ปี พ.ศ. 2517 คณะกรรมาธิการการลำดับชั้นหินสากลได้ทำงานเพื่อเชื่อมโยงบันทึกทางชั้นหินท้องถิ่นในบริเวณต่าง ๆ ของโลกให้เป็นระบบเกณฑ์มาตรฐานเดียวกันทั่วทั้งโลก[36]

ในปี พ.ศ. 2520 คณะกรรมาธิการการลำดับชั้นหินโลก (ปัจจุบัน คือ คณะกรรมาธิการการลำดับชั้นหินสากล) ได้เริ่มกำหนดจุดอ้างอิงทั่วโลกขึ้น เรียกว่า GSSP (จุดและแหล่งชั้นหินแบบฉบับขอบทั่วโลก) สำหรับช่วงเวลาทางธรณีวิทยาและระยะของกลุ่มซากดึกดำบรรพ์ โดยงานของคณะกรรมาธิการได้ถูกอธิบายไว้ในมาตรธรณีกาลปี พ.ศ. 2555 ของแกรดสเทนและคณะ[37] นอกจากนี้ยังมีแบบจำลองยูเอ็มแอล สำหรับเป็นวิธีการจัดโครงสร้างมาตรเวลาที่เกี่ยวข้องกับ GSSP ด้วย[38]

ปัญหาสหสัมพันธ์[แก้]

นักธรณีวิทยาชาวอเมริกันถือว่ามิสซิสซิปเปียนและเพนซิลเวเนียนเป็นยุคตามการแบ่งของตนมาอย่างยาวนาน แม้ว่า ICS จะรับรองทั้งสองช่วงเป็น "กึ่งยุค" (subperiods) ของยุคคาร์บอนิเฟอรัสตามการรับรองของนักธรณีวิทยาชาวยุโรป[39] กรณีเช่นนี้เกิดขึ้นในประเทศจีน ประเทศรัสเซีย และแม้แต่ประเทศนิวซีแลนด์ซึ่งมีมหายุคอื่น ๆ ทำให้การจัดบันทึกทางการลำดับชั้นหินให้เป็นหนึ่งเดียวกันนั้นช้าลง[40]

แอนโทรโปซีน[แก้]

วัฒนธรรมสมัยนิยมและนักวิทยาศาสตร์จำนวนที่มากขึ้นได้ใช้คำว่า "แอนโทรโปซีน" อย่างไม่เป็นทางการในการระบุสมัยปัจจุบันที่เรากำลังอาศัยอยู่[41] คำนี้ถูกบัญญัติโดยพอล ครูตเซนและยูจีน สโตร์เมอร์ในปี พ.ศ. 2543 เพื่ออธิบายถึงเวลาปัจจุบันที่ซึ่งมนุษย์ส่งผลกระทบอย่างมากต่อสิ่งแวดล้อม และยังมีการวิวัฒนาการเพื่ออธิบาย "สมัย" ซึ่งเริ่มต้นไปแล้วในอดีตด้วย โดยกำหนดเริ่มจากการปล่อยคาร์บอนของมนุษย์และการผลิตและการบริโภคสินค้าพลาสติกที่หลงเหลืออยู่ในพื้นดิน[42]

นักวิจารณ์คำศัพท์คำนี้กล่าวว่า ไม่ควรใช้คำศัพท์คำนี้ เนื่องจากเป็นเรื่องที่ยากในการกำหนดเวลาอย่างเฉพาะเจาะจงที่มนุษย์เริ่มมีอิทธิพลต่อชั้นหิน ซึ่งถือเป็นการกำหนดจุดเริ่มต้นของสมัย[43]

คำนี้ไม่ได้รับการอนุมัติให้ใช้อย่างเป็นทางการโดย ICS ในเดือนกันยายน พ.ศ. 2558[44] โดยคณะทำงานแอนโทรโปซีนได้จัดประชุมกัน ณ กรุงออสโล ในเดือนเมษายน พ.ศ. 2559 เพื่อรวบรวมหลักฐานสนับสนุนข้อโต้แย้งสำหรับแอนโทรโปซีนว่าเป็นสมัยทางธรณีวิทยาอย่างแท้จริง[44] โดยหลักฐานได้รับการประเมินและทางกลุ่มได้ลงมติสนับสนุนให้ใช้คำว่า "แอนโทรโปซีน" เป็นชื่อช่วงอายุใหม่ทางทางธรณีวิทยาในเดือนสิงหาคม พ.ศ. 2559[45] หากคณะกรรมาธิการการลำดับชั้นหินสากลอนุมัติข้อแนะนำนี้ ข้อเสนออนุมัติดังกล่าวจะต้องได้รับรองสัตยาบันโดยสหพันธ์ธรณีวิทยาสากล จึงจะถูกยอมรับอย่างเป็นทางการในฐานะส่วนหนึ่งของมาตรธรณีกาลได้[46]

การเปลี่ยนแปลงยุคที่สำคัญ[แก้]

  • การเปลี่ยนแปลงในช่วงไม่กี่ปีที่ผ่านมา คือ การยกเลิกการใช้ยุคเทอร์เทียรี และใช้คำว่า ยุคพาลีโอจีน และ ยุคนีโอจีนตามลำดับแทน โดยสิ่งนี้ยังคงเป็นที่ถกเถียงกันอยู่[47]
  • มีการพิจารณาการยกเลิกยุคควอเทอร์นารี แต่ถูกพักไว้ก่อนด้วยเหตุผลด้านความต่อเนื่อง[48]
  • แม้กระทั่งก่อนหน้าในประวัติของวิทยาศาสตร์ เทอร์เทียรียังถูกถือเป็น "มหายุค" และมีการแบ่งย่อยของตนด้วย (พาลีโอซีน, อีโอซีน, โอลิโกซีน, ไมโอซีน และ ไพลโอซีน) โดยเรียกการแบ่งย่อยนั้นว่า "ยุค"[49]

ตารางธรณีกาล[แก้]

ตารางด้านล่างนี้ เป็นตารางสรุปเหตุการณ์สำคัญและลักษณะเฉพาะของช่วงของเวลาซึ่งประกอบขึ้นเป็นมาตรธรณีกาล ตารางนี้ถูกจัดเรียงโดยแสดงช่วงเวลาล่าสุดไว้ทางด้านบน และด้านล่างสุดคือช่วงเวลาที่เก่าแก่ที่สุด ความสูงของแต่ละรายการในตารางนั้นไม่สอดคล้องกับระยะของแต่ละการแบ่งย่อย

เนื้อหาของตารางนี้อ้างอิงกับมาตรธรณีการอย่างเป็นทางการปัจจุบันของคณะกรรมาธิการการลำดับชั้นหินสากล (ICS)[50] โดยมีการเปลี่ยนแปลงชื่อสมัยเป็นรูปแบบตอนต้น/ตอนปลายจากล่าง/บนซึ่งเป็นรูปแบบเดิม ตามการแนะนำของคณะกรรมาธิการการลำดับชั้นหินสากล เมื่อต้องใช้การลำดับชั้นหินตามอายุกาล[51]

คณะกรรมาธิการการลำดับชั้นหินสากลยังมีบริการตารางธรณีกาลรูปแบบออนไลน์ด้วยผ่าน ics-chart โดยอ้างอิงมาจากบริการส่งมอบ Resource Description Framework/Web Ontology Language บนอุปกรณ์ที่อ่านได้ในการแสดงมาตรกาล ซึ่งพร้อมใช้งานผ่านบริการโปรเจกต์ GeoSciML ของคณะกรรมาธิการการจัดการและประยุกต์ธรณีศาสตร์ และ SPARQL[52][53]

ตารางนี้ไม่เป็นไปตามมาตราส่วน โดยแม้ว่าบรมยุคฟาเนอโรโซอิกจะดูแล้วมีขนาดใหญ่กว่าบรมยุคที่เหลือ แต่กินเวลาเพียง 500 ล้านปีเท่านั้น ขณะที่สามบรมยุคก่อนหน้า (หรืออภิมหาบรมยุคพรีแคมเบรียน) กินเวลารวมกันกว่า 3.5 พันล้านปี ลักษณะเช่นนี้ เนื่องมาจากการขาดข้อมูลเกี่ยวกับเหตุการณ์ที่เกิดขึ้นในสามบรมยุคแรก (หรืออภิมหาบรมยุค) เมื่อเทียบกับบรมยุคปัจจุบัน (บรมยุคฟาเนอโรโซอิก])[ต้องการอ้างอิง] ส่วนสมัยแอนโทรโปซีนนั้นยังไม่ถูกรวมอยู่ในตารางนี้

ตารางธรณีกาล
หินบรมยุค
/บรมยุค
หินมหายุค
/มหายุค
หินยุค
/ยุค
หินสมัย
/สมัย
หินช่วงอายุ
/ช่วงอายุ
เหตุการณ์สำคัญ เริ่มต้น
(ล้านปีที่แล้ว)[a]
ฟาเนอโรโซอิก
(Phanerozoic)
ซีโนโซอิก[b]
(Cenozoic)
ควอเทอร์นารี
(Quaternary)
โฮโลซีน
(Holocene)
เมฆาลายัน
(Meghalayan)
เหตุการณ์ 4.2 พันปี, การขยายดินแดนของชาวออสโตรนีเซีย (ไปยังเกาะมาดากัสการ์และหมู่เกาะโอเชียเนียห่างไกล), การเพิ่มขึ้นของคาร์บอนไดออกไซด์จากอุตสาหกรรม 0.0042*
นอร์ทกริปเปียน
(Northgrippian)
เหตุการณ์ 8.2 พันปี, ภูมิอากาศเหมาะสมที่สุดโฮโลซีน, ระดับน้ำทะเลสูงขึ้นท่วมด็อกเกอร์แลนด์และซุนดาแลนด์, การแปรสภาพเป็นทะเลทรายของพื้นที่สะฮาราและอาหรับ, จุดสิ้นสุดของยุคหินและจุดเริ่มต้นของยุคประวัติศาสตร์ที่มีการบันทึก, มนุษย์ขยายดินแดนไปยังกลุ่มเกาะอาร์กติกและกรีนแลนด์ 0.0082*
กรีนแลนด์เดียน
(Greenlandian)
การเข้าสู่เสถียรภาพของภูมิอากาศ, ช่วงอายุย่อยธารน้ำแข็งปัจจุบันและการสูญพันธุ์สมัยโฮโลซีนเริ่มต้นขึ้น, เริ่มต้นการทำเกษตรกรรม, มนุษย์แพร่กระจายไปทั่วสะฮาราเปียกและคาบสมุทรอาหรับ ตอนเหนือสุด และทวีปอเมริกา (แผ่นดินใหญ่และแคริบเบียน) 0.0117*
ไพลสโตซีน
(Pleistocene)
บน/ตอนปลาย
(ทารันเทียน)

(Upper/Late (Tarantian))
ช่วงคั่นช่วงอายุย่อยธารน้ำแข็งอีเมียน, ยุคน้ำแข็งครั้งล่าสุด, จุดสิ้นสุดของยังเกอร์ดรายแอส, การปะทุของภูเขาไฟโตบา, การสูญพันธุ์ของมหาสัตวชาติในสมัยไพลสโตซีน (รวมถึงนกเทอร์เรอร์เบิร์ดพวกสุดท้าย), มนุษย์ขยายดินแดนเข้าสู่โอเชียเนียใกล้และทวีปอเมริกา 0.129
ชิบาเนียน
(Chibanian)
เกิดการเปลี่ยนผ่านไพลสโตซีนกลาง, วัฏจักรน้ำแข็งหนึ่งแสนปีมีแอมพลิจูดสูง, กำเนิดมนุษย์โฮโมเซเปียนส์ 0.774
คาลาเบรียน
(Calabrian)
ภูมิอากาศเย็นลงต่อไป, นกเทอร์เรอร์ยักษ์สูญพันธุ์, การแพร่กระจายของมนุษย์โฮโมอิเร็กตัสทั่วทวีปแอฟโฟร-ยูเรเชีย 1.8*
เจลาเซียน
(Gelasian)
จุดเริ่มต้นของยุคน้ำแข็งยุคควอเทอร์นารีและภูมิอากาศไม่เสถียร[55], กำเนิดมหาสัตวชาติสมัยไพลสโตซีนและมนุษย์โฮโมแฮบิลิส 2.58*
นีโอจีน
(Neogene)
ไพลโอซีน
(Pliocene)
ปีอาเซนเซียน
(Piacenzian)
การพัฒนาขึ้นของพืดน้ำแข็งกรีนแลนด์[56] ขณะที่ความหนาวเย็นค่อย ๆ ทวีความรุนแรงขึ้นจนถึงสมัยไพลสโตซีน, ออกซิเจนและคาร์บอนไดออกไซด์ในชั้นบรรยากาศถึงระดับปัจจุบันขณะที่มวลแผ่นดินเคลื่อนมาถึงยังตำแหน่งปัจจุบัน (เช่น คอคอดปานามารวมทวีปอเมริกาเหนือและใต้เข้าด้วยกัน ทำให้เกิดการการแลกเปลี่ยนสิ่งมีชีวิตของทั้งสองทวีป), เมทาเธอเรียไม่มีกระเป๋าหน้าท้องพวกสุดท้ายสูญพันธุ์, ออสตราโลพิเทคัสแพร่กระจายอยู่ทั่วด้านตะวันออกของทวีปแอฟริกา, เริ่มต้นยุคหิน[57] 3.6*
ซานเคลียน
(Zanclean)
น้ำท่วมซานเคลียนในบริเวณเมดิเตอร์เรเนียน, การเย็นลงของภูมิอากาศต่อเนื่องมาจากสมัยไมโอซีน, สัตว์คล้ายม้าและคล้ายช้างพวกแรก, วานรอาร์ดิพิเทคัสอาศัยอยู่ในทวีปแอฟริกา[57] 5.333*
ไมโอซีน
(Miocene)
เมสซิเนียน
(Messinian)
เหตุการณ์ช่วงอายุเมสซิเนียนพร้อมทะเลสาบเกลือในบริเวณเมดิเตอร์เรเนียนอันว่างเปล่า, ภูมิอากาศแบบภาวะเรือนน้ำแข็งปานกลางซึ่งคั่นด้วยยุคน้ำแข็งและการก่อตัวขึ้นของพืดน้ำแข็งแอนตาร์กติกตะวันออก, คอริสตอเดรา สัตว์คล้ายจระเข้ที่ไม่ใช่จระเข้ และครีโอดอนต์สูญพันธุ์, หลังจากการแยกออกจากกันอย่างช้า ๆ ของบรรพบุรุษร่วมของมนุษย์และชิมแปนซี วานรซาเฮลันโทรปัสและออร์โรรินอาศัยอยู่ในทวีปแอฟริกา 7.246*
ตอร์โตเนียน
(Tortonian)
11.63*
เซอร์ร่าวาเลียน
(Serravallian)
ช่วงที่มีอากาศอบอุ่นขึ้นในภูมิอากาศที่เหมาะสมที่สุดในสมัยอีโอซีนกลาง[58], การสูญพันธุ์ในการหยุดชะงักสมัยไมโอซีนกลาง, ความหลากหลายของสายพันธุ์ฉลามลดลง, ฮิปโปพวกแรก, บรรพบุรุษของลิงใหญ่ 13.82*
ลางเกียน
(Langhian)
15.97
เบอร์ดิกาเลียน
(Burdigalian)
การก่อเทือกเขาในซีกโลกเหนือ, การเริ่มต้นของการก่อเทือกเขาไคเคาราซึ่งให้กำเนิดเทือกเขาเซาท์เทิร์นแอลป์ประเทศนิวซีแลนด์, การแพร่กระจายของผืนป่าดึงเอาคาร์บอนไดออกไซด์จำนวนมหาศาลมาใช้ จนกระทั่งทำให้ระดับของคาร์บอนไดออกไซด์ในชั้นบรรยากาศลดลงจาก 650 ppmv เหลือประมาณ 100 ppmv ในระหว่างสมัยไมโอซีน[59][c], สัตว์เลี้ยงลูกด้วยนมและนกยุคใหม่มีรูปร่างดังปัจจุบัน, วาฬดึกดำบรรพ์พวกสุดท้ายสูญพันธุ์, หญ้าสามารถพบได้ทั่วไป, บรรพบุรุษของเอป รวมถึง มนุษย์ อาศัยอยู่ในยุคนี้[60], ทวีปแอฟโฟร-อาหรับชนกับทวีปยูเรเซีย ทำให้เข็มขัดอัลพีดก่อตัวขึ้นอย่างเต็มที่และทำให้มหาสมุทรเททิสหายไป แต่ช่วยให้มีการแลกเปลี่ยนทางสัตว์ชาติของทั้งสองทวีป, ในเวลาเดียวกัน ทวีปแอฟโฟร-อาหรับแยกออกเป็นทวีปแอฟริกาและเอเชียตะวันตก 20.44
อาคิเทเนียน
(Aquitanian)
23.03*
พาลีโอจีน
(Paleogene)
โอลิโกซีน
(Oligocene)
ชาเชียน
(Chattian)
เหตุการณ์สูญพันธุ์สมัยอีโอซีน–โอลิโกซีน, จุดเริ่มต้นการแพร่กระจายของยุคน้ำแข็งแอนตาร์กติก[61] วิวัฒนาการและความหลากหลายของสัตวชาติเกิดขึ้นอย่างรวดเร็ว โดยเฉพาะอย่างยิ่ง สัตว์เลี้ยงลูกด้วยนม (เช่น มาโครพอดและพวกแมวน้ำ), การวิวัฒนาการและการแพร่พันธุ์ครั้งใหญ่ของพืชดอกยุคใหม่, ชีโมเลสตา มีอาคอยด์ และคอนดีลาร์ทสูญพันธุ์, การปรากฏขึ้นของพวกวาฬและโลมาแรก (ที่เป็นสัตว์น้ำอย่างเต็มตัว) 28.1
รูเพเลียน
(Rupelian)
33.9*
อีโอซีน
(Eocene)
ไพรอาโบเนียน
(Priabonian)
ภูมิอากาศเย็นลงปานกลาง, สัตว์เลี้ยงลูกด้วยนมยุคโบราณ (เช่น ครีโอดอนตา, มีอาคอยด์, "คอนไดลาร์ท" ฯลฯ) มีอยู่มากมายและยังคงพัฒนาต่อไปในระหว่างสมัยนี้, วงศ์สัตว์เลี้ยงลูกด้วยน้ำนม "ยุคใหม่" หลายวงศ์ปรากฏขึ้น, สายพันธุ์วาฬโบราณและพะยูนมีความหลากหลายหลังจากกลับลงไปในน้ำ, พันธุ์นกมีความหลากหลาย, เคลป์ ไดโพรโตดอนเทีย หมี และ ซีเมียนพวกแรก, มัลติทูเบอร์คิวเลและเลปติกติดันสูญพันธุ์ในช่วงปลายของสมัย, การกลับมาของธารน้ำแข็งแอนตาร์กติกาและการก่อตัวของครอบน้ำแข็ง, การก่อเทือกเขาลาราไมด์และการก่อเทือกเขาเซเวียร์ของเทือกเขาร็อกกีในทวีปอเมริกาเหนือสิ้นสุดลง, การก่อเทือกเขาของเทือกเขาแอลป์ในทวีปยุโรปเริ่มต้นขึ้น, การก่อเทือกเขาเฮลเลนิกในประเทศกรีซและทะเลอีเจียนเริ่มต้นขึ้น 37.8
บาร์โทเนียน
(Bartonian)
41.2
ลูเทเลียน
(Lutetian)
47.8*
อิพรีเชียน
(Ypresian)
เหตุการณ์ชั่วคราวสองเหตุการณ์ของภาวะโลกร้อน (PETM และ ETM-2) และภูมิอากาศอบอุ่นไปจนถึงช่วงภูมิอากาศที่เหมาะสมที่สุดสมัยอีโอซีน, เหตุการณ์อาโซลลาทำให้ระดับของคาร์บอนไดออกไซด์ลดลงจาก 3500 ppm เหลือ 650 ppm ซึ่งนับเป็นระยะเริ่มต้นของช่วงสภาพอากาศเย็นลงยาวนาน[59][c], อนุทวีปอินเดียชนเข้ากับทวีปเอเชียและการเริ่มต้นขึ้นของการก่อเทือกเขาหิมาลัย (ทำให้เกิดการแลกเปลี่ยนทางชีวภาพ) ขณะที่ทวีปยูเรเซียแยกออกจากทวีปอเมริกาเหนืออย่างสมบูรณ์ ทำให้เกิดมหาสมุทรแอตแลนติกเหนือ, เอเชียตะวันออกเฉียงใต้ภาคพื้นสมุทรเบนออกจากส่วนที่เหลือของทวีปยูเรเซีย, นกเกาะคอน สัตว์เคี้ยวเอื้อง ตัวนิ่ม ค้างคาว และ ไพรเมทที่แท้จริงอยู่ในสมัยนี้ 56*
พาลีโอซีน
(Paleocene)
ทาเนเชียน
(Thanetian)
เริ่มต้นจากการชนของอุกกาบาตชิกชูลุบและเหตุการณ์การสูญพันธุ์ยุคครีเทเชียส–พาลีโอจีน ทำให้ไดโนเสาร์กลุ่มที่ไม่ใช่สัตว์ปีกและเทอโรซอร์ สัตว์ทะเลเลี้อยคลานส่วยใหญ่ สัตว์มีกระดูกสันหลังอื่นจำนวนมาก (เช่น เมทาเธอเรียลอเรเซีย) เซฟาโลพอด (มีเพียงหอยงวงช้างและหมึกที่เหลือรอด) และสัตว์ไม่มีกระดูกสันหลังอื่นจำนวนมากสูญสิ้นไป, ภูมิอากาศแบบเขตร้อน, มีการแพร่หลายของสัตว์เลี้ยงลูกด้วยนมและนกไปเป็นวงศ์ต่าง ๆ เป็นจำนวนมากภายหลังจากการสูญพันธุ์ของไดโนเสาร์กลุ่มที่ไม่ใช่สัตว์ปีก (ขณะที่การวิวัฒนาการในทะเลหยุดลง), มัลติทูเบอร์คิวเลและสัตว์ฟันแทะพวกแรกแพร่กระจายไปทั่ว, นกขนาดใหญ่ (เช่น นกราไทท์และนกทอร์เรอร์) และสัตว์เลี้ยงลูกด้วยนมขนาดใหญ่ (ใหญ่ขนาดหมีหรือเล็กขนาดฮิปโปโปเตมัส) ปรากฏขึ้นครั้งแรก, การก่อเทือกเขาอัลไพน์ในทวีปยุโรปและทวีปเอเชียเริ่มต้นขึ้น, พวกช้างและเพลเซียดาพิฟอร์เมส (บรรพบุรุษก่อกำเนิดไพรเมท) ปรากฏขึ้น, สัตว์มีกระเป๋าหน้าท้องบางส่วนอพยพไปยังทวีปออสเตรเลีย 59.2*
เซอแลนเดียน
(Selandian)
61.6*
ดาเนียน
(Danian)
66*
มีโซโซอิก
(Mesozoic)
ครีเทเชียส
(Cretaceous)
บน/ตอนปลาย
(Upper/Late)
มาสทริเชียน
(Maastrichtian)
พืชดอกเพิ่มจำนวนขึ้นอย่างรวดเร็ว (หลังจากการพัฒนาลักษณะหลายประการตั้งแต่ยุคคาร์บอนิเฟอรัส) พร้อมกับแมลงชนิดใหม่ ขณะที่พืชดอกอื่น (พืชเมล็ดเปลือยและเฟิร๋นมีเมล็ด) เสื่อมลง, ปลาเทลีออสยุคใหม่เริ่มต้นปรากฏมากขึ้น, แอมโมไนต์ เบเลมโนอิเด รูดิสต์ไบวาลเวีย เม่นทะเล และ ฟองน้ำ พบได้ทั่วไป, ไดโนเสาร์ชนิดใหม่หลายชนิด (เช่น ไทแรนโนซอรัส, ลิโทสโตรเชีย, ฮาโดรซอร์ และ เซราทอปซิเด) วิวัฒนาการขึ้นบนแผ่นดิน] ขณะที่จระเข้ปรากฏในน้ำและอาจเป็นเหตุให้เทมโนสปอนดีลส์พวกสุดท้ายสูญพันธุ์ไป และโมซาซอร์ และปลาฉลามยุคใหม่ปรากฏขึ้นในทะเล, การปฏิวัติที่เริ่มต้นโดยสัตว์เลี้อยคลานและฉลามในทะเลถึงจุดสูงสุด แม้ว่าอิกทีโอซอร์จะหายไปในไม่กี่ล้านปีหลังจากถูกลดขนาดลงอย่างมากจากเหตุการณ์โบนาเรลลี, นกมีหยักซี่ฟันและไร้หยักซี่ฟันปรากฏขึ้นพร้อมกันกับเทอโรซอร์, สัตว์เลี้ยงลูกด้วยนมพวกโมโนทรีม เมทาเธอเรีย (ประกอบด้วย มาร์ซูเพียล ซึ่งอพยพไปยังทวีปอเมริกาใต้) และ ยูทีเรีย (ประกอบด้วย พลาเซนตาเลีย เลปติกตีดา และ ชีโมเลสตา) ปรากฏขึ้นขณะที่ไซโนดอนต์พวกสุกท้ายที่ไม่ใช่สัตว์เลี้ยงลูกด้วยนมสูญพันธุ์ไป, ปูบกพวกแรก, หอยทากจำนวนมากขึ้นมาอยู่บนบก, การแตกออกของมหาทวีปกอนด์วานาทำให้เกิดทวีปอเมริกาใต้ ทวีปแอฟโฟร-อาหรับ ทวีปแอนตาร์กติกา โอเชียเนีย เกาะมาดากัสการ์ อินเดียใหญ่ และเกิดมหาสมุทรแอตแลนติกใต้ มหาสมุทรอินเดีย และ มหาสมุทรแอนตาร์กติก และเกิดหมู่เกาะต่าง ๆ ขึ้นในมหาสมุทรอินเดีย (และบางส่วนของมหาสมุทรแอตแลนติก) ขึ้น, การก่อเทือกเขาลาราไมด์และการก่อเทือกเขาเซเวียร์ของเทือกเขาร็อกกีเริ่มต้นขึ้น, คาร์บอนไดออกไซด์ในบรรยากาศของโลกมีระดับใกล้เคียงกับปัจจุบัน, อะครีทาร์ชหายไป, ภูมิอากาศเริ่มอุ่นขึ้นแต่เย็นลงในภายหลัง 72.1 ± 0.2*
คัมปาเนียน
(Campanian)
83.6 ± 0.2
ซานโตเนียน
(Santonian)
86.3 ± 0.5*
โคเนียเซียน
(Coniacian)
89.8 ± 0.3
ทูโรเนียน
(Turonian)
93.9*
ซีโนมาเนียน
(Cenomanian)
100.5*
ล่าง/ตอนต้น
(Lower/Early)
อัลเบียน
(Albian)
~113
อัปเทียน
(Aptian)
~125
บาร์เรมเมียน
(Barremian)
~129.4
เฮาเทริเวียน
(Hauterivian)
~132.9
เวลังจิเนียน
(Valanginian)
~139.8
เบอร์เรียเชียน
(Berriasian)
~145
จูแรสซิก
(Jurassic)
บน/ตอนปลาย
(Upper/Late)
ทิโทเนียน
(Tithonian)
ภูมิอากาศแบบชื้นกลับมาอีกครั้ง, พืชเมล็ดเปลือย (โดยเฉพาะ โคนิเฟอร์, เบนเนททีเทลส์ และพืชพวกปรง) และเฟิร์นแพร่หลายโดยทั่วไป, ไดโนเสาร์หลายชนิด เช่น ซอโรพอด คาร์โนซอเรีย และสเตโกซอเรียกลายเป็นสัตว์มีกระดูกสันหลังที่ครองพื้นที่บนแผ่นดิน, สัตว์เลี้ยงลูกด้วยนมมีการหลากหลายของพันธุ์ไปเป็นพวกชัวเตรีเด ออสตราโลสฟีนีดา ยูทรีโคโนดอนต์ มันติทูเบอร์คูเลต ซิมเมโทรดอนต์ ดรายเลสทิเด และ ไทรโบสฟีนิดา แต่ยังคงมีขนาดเล็ก, นก กิ้งก่า งู และเต่าปรากฏขึ้นครั้งแรก, สาหร่ายสีน้ำตาล ปลากระเบน กุ้งฝอย ปู และ ล็อบสเตอร์พวกแรก, อิคทีโอซอร์และเพลสิโอซอร์มีการแตกไปเป็นสายพันธุ์ต่าง ๆ, ไรนโคเซฟาเลียแพร่ไปทั่วโลก, ไบวาลเวีย แอมโมไนต์ และ เบเลมไนต์มีอยู่อยากมากมายมหาศาล, เม่นทะเลพบได้ทั่วไปอย่างมาก พร้อมกับไครนอยด์ ดาวทะเล ฟองน้ำ และเทราบราทิวไลดา และแบรคิโอพอดรินคอเนลลิดา, การแตกออกของมหาทวีปแพนเจียเป็นมหาทวีปกอนด์วานาและมหาทวีปลอเรเชีย ซึ่งภายหลังมีการแตกออกอีกเป็นสองส่วนหลัก มหาสมุทรแปซิฟิกและมหาสมุทรอาร์กติกก่อตัวขึ้น, มหาสมุทรทีทิสก่อตัวขึ้น, การก่อเทือกเขาเนวาดาในทวีปอเมริกาเหนือ, การก่อเทือกเขารันกีตาตาและการก่อเทือกเขาซิมเมอเรียนมีกิจกรรมน้อยลง, ระดับของคาร์บอนไดออกไซด์ในชั้นบรรยากาศมีมากเป็น 3–4 เท่าของระดับปัจจุบัน (1200–1500 ppmv เทียบกับปัจจุบันที่ 400 ppmv[59][c]), โครโคดีโลมอร์ฟาหาช่องทางในการใช้ชีวิตในน้ำ, ช่วงก่อเทือกเขาทะเลมหายุคมีโซโซอิกดำเนินต่อเนื่องมาจากสมัยไทรแอสซิกตอนปลาย, เทนตะคูไลต์หายไป 152.1 ± 0.9
คิมเมอริดเจียน
(Kimmeridgian)
157.3 ± 1.0
อ็อกฟอร์เดียน
(Oxfordian)
163.5 ± 1.0
ตอนกลาง
(Middle)
คัลโลเวียน
(Callovian)
166.1 ± 1.2
บาโธเนียน
(Bathonian)
168.3 ± 1.3*
บาจอเชียน
(Bajocian)
170.3 ± 1.4*
อาเลเนียน
(Aalenian)
174.1 ± 1.0*
ล่าง/ตอนต้น
(Lower/Early)
โทอาร์เชียน
(Toarcian)
182.7 ± 0.7*
ไพเลนส์เบเชียน
(Pliensbachian)
190.8 ± 1.0*
ไซเนมูเรียน
(Sinemurian)
199.3 ± 0.3*
เฮทเทนเจียน
(Hettangian)
201.3 ± 0.2*
ไทรแอสซิก
(Triassic)
บน/ตอนปลาย
(Upper/Late)
เรเทียน
(Rhaetian)
อาร์โคซอร์เป็นไดโนเสาร์ครองแผ่นดินและเทอโรซอร์ครองท้องฟ้า, ยังมีไดโนเสาร์ที่เจริญมาจากอาร์โคซอร์สองเท้า, อิคทีโอซอร์และโนโทซอร์เป็นสัตวชาติที่ครองผืนสมุทร, ไซโนดอนต์เริ่มมีขนาดเล็กลงและคล้ายสัตว์เลี้ยงลูกด้วยนมมากขึ้นจนในที่สุดกลายเป็นสัตว์เลี้ยงลูกด้วยนมแท้พวกแรก ขณะที่สัตว์เลี้อยคลานคล้ายสัตว์เลี้ยงลูกด้วยนมอื่น ๆ ที่เหลือสูญพันธุ์ไป, ไรนโคซอร์มีอยู่อย่างทั่วไป, เฟิร์นเมล็ดที่เรียกว่า ดิโครเดียม ยังคงมีอยู่ทั่วไปในมหาทวีปกอนด์วานา ก่อนจะถูกแทนที่ด้วยพืชเมล็ดเปลือยชั้นสูง, เทมโนสปอนไดล์ทะเลสะเทินน้ำสะเทินบกขนาดใหญ่มีอยู่มากมาย, เซราไทติกแอมโมนอยด์มีอยู่ทั่วไปเป็นอย่างมาก, ปะการังยุคใหม่และปลาเทลีออสรวมถึงบรรพบุรุษของแมลงยุคใหม่มากมายได้ปรากฏขึ้น, การก่อเทือกเขาแอนดีสในทวีปอเมริกาใต้เริ่มต้นขึ้น, การก่อเทือกเขาซิมเมอเรียนในทวีปเอเชียเริ่มต้นขึ้น, การก่อเทือกเขารันกีตาตาในประเทศนิวซีแลนด์เริ่มต้นขึ้น, การก่อเทือกเขาฮันเตอร์-โบเวนในออสเตรเลียเหนือ ควีนส์แลนด์ และรัฐนิวเซาท์เวลส์สิ้นสุดลง (ประมาณ 260–225 ล้านปีก่อน), คราวฝนตกชุกช่วงอายุคาร์เนียนเกิดขึ้นประมาณ 234-232 ล้านปีก่อน ช่วยให้ไดโนเสาร์และเลพิโดซอร์แพร่กระจาย, เหตุการณ์การสูญพันธุ์ยุคไทรแอสซิก–ยุคจูแรสซิกเกิดขึ้นเมื่อ 201 ล้านปีก่อน ทำให้โคโนดอนต์และโพรโคโลโฟนีเดพวกสุดท้าย สัตว์เลี้อยคลานทะเลหลายชนิด (เช่น ซอโรปเทอรีเจียนทั้งหมดยกเว้นเพลสิโอซอร์และอิกทีโอซอร์ทั้งหมดยกเว้นพาร์วิเพลเวีย) โครโคโพดันทั้งหมดยกเว้นโครโคไดโลมอร์ฟ เทอร์โรซอร์ ไดโนเสาร์ แอมโมนอยด์ส่วนใหญ่ (รวมถึงเซราทิทิดาทั้งหมด) ไบวาลเวีย แบรคิโอพอด ปะการัง และ ฟองน้ำสูญพันธุ์ไป, ไดอะตอมพวกแรก ~208.5
นอเรียน
(Norian)
~227
คาร์เนียน
(Carnian)
~237*
ตอนกลาง
(Middle)
เลเดียน
(Ladinian)
~242*
อานิเชียน
(Anisian)
247.2
ล่าง/ตอนต้น
(Lower/Early)
โอเลเนเคียน
(Olenekian)
251.2
อินดูอัน
(Induan)
251.902 ± 0.06*
พาลีโอโซอิก
(Paleozoic)
เพอร์เมียน
(Permian)
โลพินเจียน
(Lopingian)
ชางซิงเจียน
(Changhsingian)
มวลแผ่นดินรวมเข้าด้วยกันเป็นมหาทวีปแพนเจียและได้ก่อกำเนิดเทือกเขาแอปพาเลเชียน ยูรัล และอูชีตาขึ้นท่ามกลางเทือกเขาอื่น ๆ (มหาสมุทรยักษ์แพนทาลัสซาหรือมหาสมุทรแปซิฟิกดั้งเดิมก่อตัวขึ้น), ยุคน้ำแข็งเพอร์โม-คาร์บอนิเฟอรัสสิ้นสุดลง, ภูมิอากาศแบบร้อนและแห้ง, เป็นไปได้ว่าเกิดการลดระดับลงอย่างรวดเร็วของออกซิเจน, ซีแนปซิด (ประกอบด้วย เพไลโคซอร์และเทอแรปซิด) มีอยู่เป็นจำนวนมาก ขณะที่พาราเรปทิเลีย เทมโนสปอนไดล์สะเทินน้ำสะเทินบกยังคงมีอยู่ทั่วไป, ในยุคเพอร์เมียนกลาง พฤกษชาตยุคถ่านหินถูกแทนที่ด้วยพืชเมล็ดเปลือยมีโคน (พืชมีเมล็ดแท้กลุ่มแรก) และด้วยมอสส์แท้กลุ่มแรก, ด้วงและแมลงวันวิวัฒนาการขึ้น, สัตว์ขาปล้องขนาดใหญ่มากและเตตระพอโดมอร์ฟาที่ไม่ใช่เตตระพอดสูญพันธุ์, สิ่งมีชีวิตใต้ทะเลเจริญงอกงามตามแนวปะการังน้ำตื้นที่อบอุ่น โดยพรอดักทิดาและแบรคิโอพอดสปิริเฟริดา ไบวาลเวีย ฟอรามินิเฟอรา และออร์โทเซริดาทั้งหมดมีอยู่มากมาย, เซาเรียเจริญขึ้นจากไดแอปซิดและแยกออกไปเป็นบรรพบุรุษของเลพิโดซอร์ คูเอนีโอซอร์ คอริสโตเดเรส อาร์โคซอร์ เทสตูดีนาทัน อิกคิโอซอรัส ทาลัตโตซอร์ และซอโรเทรีเจียน, ไซโนดอนต์วิวัฒนาการขึ้นจากเทอแรปซิดขนาดใหญ่, การสูญพันธุ์ออลสัน (273 ล้านปีก่อน) เหตุการณ์สูญพันธ์ครั้งใหญ่คาปิตาเนียน (260 ล้านปีก่อน) และเหตุการณ์การสูญพันธุ์ยุคเพอร์เมียน–ไทรแอสซิก (252 ล้านปีก่อน) เกิดขึ้นต่อเนื่องกัน ทำให้สิ่งมีชีวิตบนโลกมากว่าร้อยละ 80 สูญพันธุ์ไปในที่สุด ประกอบด้วย แพลงก์ตอนเรตาเรียส่วนมาก ปะการัง (ทาบูลาตาและรูโกซาสูญพันธ์ไปทั้งหมด) แบรคิโอพอด ไบรโอโซอัน แกสโทรพอด (โกเนียทิทิสสูญพันธุ์ไปทั้งหมด) แมลง พาราเรปไทล์ ไซแนปซิด แอมฟีเบียน และ ไครนอยด์ (มีเฉพาะอาร์ติคูเลตที่รอด) และยูริปเทอริด ไทรโลไบต์ แกรพโตไลต์ ไฮโอลิท เอดรีโอแอสเทอรอยด์ บลัสตอยด์ และ อาคันโทดีทั้งหมด, การก่อเทือกเขาวาชิตาและการก่อเทือกเขาอินนูอิเชียนในทวีปอเมริกาเหนือ, การก่อเทือกเขายูเรเลียนในทวีปยุโรปและทวีปเอเชีย]]ลดลง, การก่อเทือกเขาอัลไตในทวีปเอเชีย, การก่อเทือกเขาฮันเตอร์-โบเวนในทวีปออสเตรเลียเริ่มต้นขึ้น (ประมาณ 260–225 ล้านปีก่อน) ก่อกำเนิดเทือกเขาแม็กดอนเนลขึ้น 254.14 ± 0.07*
วูเชียพิงเจียน
(Wuchiapingian)
259.1 ± 0.4*
กัวเดลูเปียน
(Guadalupian)
คาฟิเทเนียน
(Capitanian)
265.1 ± 0.4*
วอร์เดียน
(Wordian)
268.8 ± 0.5*
โรเดียน
(Roadian)
272.95 ± 0.5*
ซิซูราเลียน
(Cisuralian)
คุนกูเรียน
(Kungurian)
283.5 ± 0.6
อาร์ทินส์เคียน
(Artinskian)
290.1 ± 0.26
ซัคมาเรียน
(Sakmarian)
295 ± 0.18
อัสเซเลียน
(Asselian)
298.9 ± 0.15*
คาร์บอนิเฟอรัส[d]
(Carboniferous)
เพนซิลเวเนียน
(Pennsylvanian)
เจเลียน
(Gzhelian)
แมลงมีปีกแพร่กระจายอย่างรวดเร็ว โดยบางชนิด (โดยเฉพาะอย่างยิ่ง เมกาไนซอปเทรา และแพลีออดิกทีออปเทรา) โดยบางส่วนเช่นกิ้งก่าและแมงป่องมีขนาดค่อนข้างใหญ่, ป่าพืชถ่านหินพวกแรก (ไม้สเกล, เฟิร์น, ไม้คลับ, หางม้ายักษ์, คอร์ไดท์ ฯลฯ), ระดับออกซิเจนในชั้นบรรยากาศโลกอยู่ในระดับสูงที่สุด, ยุคน้ำแข็งดำเนินต่อเนื่องไปจนถึงตอนต้นของยุคเพอร์เมียน, กอเนียไทต์ แบรคิโอพอด ไบรโอซัว ไบวาลเวีย และปะการังมีอยู่อย่างแพร่หลายในทะเลและมหาสมุทร, วูดเลาส์พวกแรก, ฟอรามินิเฟอราเทสเตตมีอยู่อย่างแพร่หลาย, ทวีปยูราเมริกาชนกับมหาทวีปกอนด์วานาและไซบีเรีย-คาซัคสถาเนีย ซึ่งภายหลังก่อตัวเป็นมหาทวีปลอเรเชียและเกิดการก่อเทือกเขายูเรเลียนขึ้น, การก่อเทือกเขาวาริสแคนกำเนินต่อไป (การชนกันของทวีปต่าง ๆ นี้ก่อการก่อเทือกเขาขึ้นและในที่สุดแล้วจะกลายเป็นมหาทวีปแพนเจีย), สัตว์สะเทินน้ำสะเทินบก (เช่น เทมโนสปอนดิล) แพร่หลายในทวีปยูราเมริกา โดยบางส่วนกลายเป็นแอมนิโอตพวกแรก, เกิดการพังทลายของป่าฝนยุคคาร์บอนิเฟอรัสทำให้สภาพอากาศแห้งแล้ง ซึ่งเอื้ออำนวยต่อแอมนิโอตมากกว่าสัตว์สะเทินน้ำสะเทินบก, แอมนิโอตขยายพันธุ์อย่างรวดเร็วไปเป็นซีแนปซิด พาราเรปทีเลีย คอติโลซอร์ โปรโตรอทรีดีเด และ ไดแอปซิด, ไรโซดอนต์มีอยู่ทั่วไปก่อนที่จะสูญพันธุ์ไปในช่วงสิ้นสุดของยุค, ปลาฉลามพวกแรก 303.7 ± 0.1
แคสซิโมเวียน
(Kasimovian)
307 ± 0.1
มอสโกเวียน
(Moscovian)
315.2 ± 0.2
บาชคิเรียน
(Bashkirian)
323.2 ± 0.4*
มิสซิสซิปเปียน
(Mississippian)
เซอร์ปูโคเวียน
(Serpukhovian)
ต้นไม้โบราณขนาดใหญ่เจริญงอกงามและยูริปเทอริดสะเทินน้ำสะเทินบกอาศัยอยู่ท่ามกลางบริเวณชายฝั่งน้ำกร่อยจากการก่อตัวของถ่านหินและมีการแตกขยายสายพันธุ์อย่างสำคัญเป็นครั้งสุดท้าย, พืชเมล็ดเปลือยพวกแรก, แมลงเอ็นดอปเทริโกตา พารานีออปเทรา พอลินีออปเทรา ออโดเนทอปเทรา และ เอเฟเมรอปเทราพวกแรก และเพรียงพวกแรก, เทเทรอพอดสะเทินน้ำสะเทินบกห้านิ้วและหอยทากบกพวกแรก, ในมหาสมุทร ปลากระดูกแข็งและกระดูกอ่อนเป็นพวกหลักและมีการสายพันธุ์แพร่หลาย เอไคโนเดอร์มาตา (โดยเฉพาะอย่างยิ่งไครนอยด์และแบลสตอยด์) มีอยู่มากมาย, ปะการัง ไบรโอซัว กอเนียไทต์ และแบรคิโอพอด (พรอดักทิดา และ สปิริเฟอริดา ฯลฯ) ฟื้นตัวและเริ่มมีอยู่ทั่วไปอีกครั้ง แต่ไทรโลไบต์และนอติลอยด์เริ่มจำนวนลดลง, การเปลี่ยนสภาพโดยธารน้ำแข็งในฝั่งตะวันออกของมหาทวีปกอนด์วานาต่อเนื่องมาจากสมัยดีโวเนียนตอนปลาย, การก่อเทือกเขาตูฮูอาในประเทศนิวซีแลนด์ลดลง, ปลาที่มีครีบเป็นพู่ชื่อไรโซดอนต์เริ่มมีจำนวนมากและเป็นพวกหลักในน้ำจืด, ทวีปไซบีเรียชนกับทวีปคาซัคสถาเนียที่มีขนาดเล็ก 330.9 ± 0.2
ไวชอน
(Viséan)
346.7 ± 0.4*
ทัวร์เนเซียน
(Tournaisian)
358.9 ± 0.4*
ดีโวเนียน
(Devonian)
บน/ตอนปลาย
(Upper/Late)
ฟาเมนเนียน
(Famennian)
ต้นสามร้อยยอด เฟิร์น พืชมีเมล็ด (เฟิร์นเมล็ดจากโพรจิมโนสเปิร์มก่อนหน้า) ต้นไม้ต้นแรก (โพรจิมโนสเปิร์มอาร์เคออปเทอริส) และแมลงมีปีก (พาลีออปเทราและนีออปเทรา) พวกแรก, สโตรโฟเมนิดาและแบรคิโอพอดอาทรีปิด รูโกซา และ ปะการังทาบิวลาทา และ ไครนอยด์ทั้งหมดนั้นมีอยู่เต็มไปหมดในมหาสมุทร, เซฟาโลพอดตัวขด (แอมโมนอยด์และนอติลิดา) พวกแรกโดยกลุ่มเดิมนั้นมีอยู่อย่างมากมาย (โดยเฉพาะอย่างยึ่งโกเนียทิทิส), ไทรโลไบต์และออสตราโคเดิร์มมีจำนวนลดลง ขณะที่ปลามีขากรรไกร (ปลามีเกราะ, ปลาที่มีครีบเป็นพู่ และปลากระดูกแข็ง และปลาฉลามยุคแรก) แพร่พันธุ์อย่างรวดเร็ว, ปลาที่มีครีบเป็นพู่เทเทรอพอโดมอร์ฟาเปลี่ยนไปเป็นฟิชาพอดที่มีนิ้ว และค่อย ๆ กลายเป็นสัตว์สะเทินน้ำสะเทินบกอย่างช้า ๆ, อาร์ทิโอพอดที่ไม่ใช่ไทรโลไบต์พวกสุดท้ายสูญพันธุ์, เดคาพอด (เช่น กุ้งใหญ่) และไอโซพอดกลุ่มแรก, ความกดดันจากปลามีขากรรไกรทำให้ยูริปเทอริดลดจำนวนลงและเซฟาโลพอดบางชนิดสูญเสียเปลือกของตนไป ขณะที่อะโนมาโลคาริดสูญหายไป, "ทวีปแดงเก่า" ของยูราเมริกายังคงปรากฏอยู่หลังจากการก่อเทือกเขาแคลิโดเนีย, การก่อเทือกเขาอะเคเดียนของเทือกเขาแอนไทแอตลาสของแอฟริกาเหนือ และเทือกเขาแอปพาเลเชียนของอเมริกาเหนือเริ่มต้นขึ้น นอกจากนี้ยังมีการก่อเทือกเขาแอนท์เลอร์ การก่อเทือกเขาวาริสแคน และ การก่อเทือกเขาตูฮูอาในประเทศนิวซีแลนด์ด้วย, ชุดของเหตุการณ์สูญพันธุ์ ประกอบด้วย เหตุการณ์เคลวัสเซอร์ และ เหตุการณ์ฮันเกนเบิร์ก ทำให้แอคริทาก ปะการัง ฟองน้ำ มอลลัสกา ไทรโลไบต์ ยูริปเทอริด กราฟโตไลต์ แบรคิโอพอด ไครโนซัว (เช่น พวกคริสตอยด์ทั้งหมด) และ ปลา รวมไปถึงพลาโคเดิร์มและออสตราโคเดิร์มสูญพันธุ์ไปเป็นจำนวนมาก 372.2 ± 1.6*
ฟราสเนียน
(Frasnian)
382.7 ± 1.6*
ตอนกลาง
(Middle)
จิเวเทียน
(Givetian)
387.7 ± 0.8*
ไอเฟเลียน
(Eifelian)
393.3 ± 1.2*
ล่าง/ตอนต้น
(Lower/Early)
เอมเชียน
(Emsian)
407.6 ± 2.6*
ปราเกียน
(Pragian)
410.8 ± 2.8*
ลอชโคเวียน
(Lochkovian)
419.2 ± 3.2*
ไซลูเรียน
(Silurian)
พริโดลี
(Pridoli)
ชั้นโอโซนหนาขึ้น, พืชมีท่อลำเลียงพวกแรกปรากฏขึ้นและสัตว์ขาปล้อง ได้แก่ ตะขาบ แมลงหกขา (ประกอบด้วย แมลง) และ แมงขึ้นมาอยู่บนบกอย่างสมบูรณ์, ยูริปเทอริดขยายสายพันธุ์อย่างรวดเร็วจนกระจายไปจนทั่วและมีจำนวนมาก, เซฟาโลพอดหรือพวกหมึกยังคงมีอยู่อย่างมากมาย, ปลามีขากรรไกรพร้อมกับออสตราโคเดิร์มแท้แพร่ไปทั่วทั้งทะเล, ปะการังทาบูเลตและรูโกซา แบรคิโอพอด (เพนตะเมริดา, รินโคเนลลิดา ฯลฯ) คริสตอยด์ และ ไครนอยด์ทั้งหมดมีอยู่อย่างมากมาย, ไทรโลไบต์และมอลลัสกามีอยู่อย่างหลากหลายสายพันธุ์ ส่วนแกรพโตไลต์ไม่ค่อยหลากหลาย, เหตุการณ์การสูญพันธุ์ครั้งย่อยสามครั้ง, สัตว์พวกผิวหนามบางส่วนสูญพันธุ์, การก่อเทือกเขาแคลีโดเนีย (การชนกันระหว่างลอเรนเชียและบัลติกาและหนึ่งในแผ่นดินกอนด์วานาขนาดเล็ก) สำหรับเทือกเขาในประเทศอังกฤษ ไอร์แลนด์ เวลส์ สก็อตแลนด์ และเทือกเขาแถบสแกนดิเนเวียเริ่มต้นขึ้น, นอกจากนี้ยังมีการก่อเทือกเขาอะเคเดียนด้านบนที่ต่อเนื่องเข้าสู่ยุคดีโวเนียน (และจึงก่อตัวเป็นทวีปยูราเมริกาขึ้น), การก่อเทือกเขาทาโคนิกลดลง, ยุคบ้านน้ำแข็งสิ้นสุดลงในปลายยุคนี้หลังจากเริ่มต้นขึ้นในสมัยออร์โดวิเชียนตอนปลาย, การก่อเทือกเขาล็อกแลนในทวีปออสเตรเลียลดลง 423 ± 2.3*
ลัดโลว
(Ludlow)
ลุดฟอร์เดียน
(Ludfordian)
425.6 ± 0.9*
กอร์สเทียน
(Gorstian)
427.4 ± 0.5*
เวนล็อก
(Wenlock)
โฮเมอเรียน
(Homerian)
430.5 ± 0.7*
เชียนวูดเดียน
(Sheinwoodian)
433.4 ± 0.8*
ลานโดเวอรี
(Llandovery)
เทลีเคียน
(Telychian)
438.5 ± 1.1*
แอโรเนียน
(Aeronian)
440.8 ± 1.2*
รุดดาเนียน
(Rhuddanian)
443.8 ± 1.5*
ออร์โดวิเชียน
(Ordovician)
บน/ตอนปลาย
(Upper/Late)
เฮอร์แนนเชียน
(Hirnantian)
เหตุการณ์การแพร่กระจายทางชีวภาพครั้งใหญ่ยุคออร์โดวิเชียนเกิดขึ้นโดยเป็นการเพิ่มจำนวนขึ้นของแพลงก์ตอน สัตว์ไม่มีกระดูกสันหลังมีสายพันธุ์เกิดขึ้นจำนวนมาก (โดยเฉพาะอย่างยิ่งแบรคิโอพอด และ มอลัสกา เช่น สัตว์พวกหมึกเปลือกตรง เช่น พวกออร์โทเซริดาที่มีอายุยืนยาวและมีสายพันธุ์หลายหลาย) แบรคิโอพอดที่ต่อกัน (เช่น ออร์ทิดา, สโตรโฟเมนิดา ฯลฯ) ไบวาลเวีย เซฟาโลพอด (นอติลอยด์) ไทรโลไบต์ ออสตราคอด ไบรโอซัว เอไคโนเดอร์มาตาหลายชนิด (แบลสตอยด์ คริสตอยด์ ไครนอยด์ เม่นทะเล ปลิงทะเล และ สัตว์คล้ายดาว ฯลฯ) และลำดับขั้นอื่น ๆ ทั่วไป, อาคริทาร์ชยังคงอยู่มีอยู่โดยทั่วไป, เซฟาโลพอดมีจำนวนมากขึ้นและมีอยู่โดยทั่วไป พร้อมทั้งมีแนวโน้มที่จะมีเปลือกแบบขด, อะโนมาโลคาริดสูญพันธุ์, เทนตะคูไลต์ปริศนาปรากฏขึ้น, ปลายูริปเทอริดและออสตราโคเดิร์มปรากฏขึ้น ซึ่งภายหลังมีความเป็นไปได้ที่จะพัฒนาไปเป็นปลามีขากรรไกรตอนสิ้นสุดยุค, เห็ดราบกพวกแรกและการขึ้นมาอยู่บนบกของพืชอย่างเต็มตัว, ยุคน้ำแข็งตอนสิ้นสุดยุค รวมถึงชุดของเหตุการณ์สูญพันธุ์ครั้งใหญ่ ทำให้เซฟาโลพอดบางส่วนและแบรคิโอพอด ไบรโอซัว เอไคโนเดิร์ม แกรพโตไลต์ ไทรโลไบต์ ไบวาลเวีย ปะการัง และ โคโนดอนต์จำนวนมากตายไป 445.2 ± 1.4*
เคเทียน
(Katian)
453 ± 0.7*
แซนด์เบียน
(Sandbian)
458.4 ± 0.9*
ตอนกลาง
(Middle)
แดริวิเลียน
(Darriwilian)
467.3 ± 1.1*
ตาพิงเจียน
(Dapingian)
470 ± 1.4*
ล่าง/ตอนต้น
(Lower/Early)
โฟลเอียน
(Floian)
477.7 ± 1.4*
เทรมาโดเชียน
(Tremadocian)
485.4 ± 1.9*
แคมเบรียน
(Cambrian)
ฟูโรงเจียน
(Furongian)
หินช่วงอายุ 10
(Stage 10)
เกิดความหลากหลายของสิ่งมีชีวิตครั้งใหญ่ในเหตุการณ์การระเบิดยุคแคมเบรียนจากการเพิ่มขึ้นของระดับออกซิเจน, พบซากดึกดำบรรพ์จำนวนมาก โดยไฟลัมของสัตว์ยุคใหม่ (ประกอบด้วย สัตว์ขาปล้อง มอลลัสกา สัตว์พวกหนอนปล้อง เอไคโนเดอร์มาตา เฮมิโนเดิร์ม และ คอร์เดต) ปรากฏขึ้น, อาร์คีโอไซทาคล้ายปะการังมีอยู่อย่างแพร่หลายและสาบสูญไปในเวลาต่อม โดยสโตรมาไลต์มาแทนที่ แต่ก็ตกเป็นเหยื่อในช่วงก่อเทือกเขาตั้งต้นยุคแคมเบรียน เมื่อสัตว์บางชนิดเริ่มขุดเจาะลงไปตามแผ่นจุลินทรีย์ (ส่งผลกับสัตว์อื่นบางชนิดด้วยเช่นกัน), อาร์ติโอพอด (ได้แก่ ไทรโลไบต์) หนอนไพรอะพูลา แบรคิโอพอดแบบไม่ประกบกัน (เปลือกแบบไม่มีบานพับ) ไฮโอไลต์ ไบรโอซัว แกรพโตไลต์ เอไคโนเดิร์มห้าแฉก (เช่น แบลสโตซัว ไครโนซัว และ เอลูเทอโรซัว) และสัตว์อื่นมีอยู่เป็นจำนวนมาก, แอนอมาโลคารีดาเป็นสัตว์นักล่าขนาดใหญ่ ขณะที่สัตวชาติยุคอีดีแอคารันสูญพันธุ์ลงไป, สัตว์พวกกุ้งกั้งปูและมอลลัสกาขยายจำนวนสายพันธุ์อย่างรวดเร็ว, โพรแคริโอต โพรทิสต์ (เช่น ฟอรามินิเฟอรา) เห็ดรา และ สาหร่ายยังคงปรากฏมาจนถึงทุกวันนี้, สัตว์มีแกนสันหลังพวกแรกปรากฏตัวขึ้นจากพวกคอร์เดตก่อนหน้านี้, การก่อเทือกเขาปีเตอร์แมนน์ในทวีปออสเตรเลียลดลง (550–535 ล้านปีก่อน), การก่อเทือกเขารอสส์ในทวีปแอนตาร์กติกา, การก่อเทือกเขาเดลาเมเรียน (ประมาณ 514–490 ล้านปีก่อน) และการก่อเทือกเขาล็อกแลน (ประมาณ 540–440 ล้านปี) ในทวีปออสเตรเลีย, ศิลาภูมิประเทศขนาดเล็กบางส่วนแตกออกจากมหาทวีปกอนด์วานา, ปริมาณคาร์บอนไดออกไซด์ในชั้นบรรยากาศมีจำนวนเป็น 15 เท่าของปัจจุบัน (สมัยโฮโลซีน) (6000 ppmv เทียบกับปัจจุบันที่ 440 ppmv)[59][c], สัตว์ขาปล้องและพืชบกเริ่มยืดครองแผ่นดิน, เหตุการณ์สูญพันธุ์สามครั้งเกิดขึ้นเมื่อ 517 502 และ 488 ล้านปีก่อน โดยครั้งแรกและครั้งสุดท้ายทำให้พวกอะโนมาโลคาริด สัตว์ขาปล้อง ไฮโอไลต์ แบรคิโอพอด มอลลัสกา และโคโนดอนต์ (สัตว์มีแกนสันหลังไร้ขากรรไกรยุคแรก) สูญพันธุ์ไปเป็นจำนวนมาก ~489.5
เจียงชานเนียน
(Jiangshanian)
~494*
ไพเบียน
(Paibian)
~497*
เมียวลิงเจียน
(Miaolingian)
กูจางเจียน
(Guzhangian)
~500.5*
ดรูเมียน
(Drumian)
~504.5*
วูลิวเวียน
(Wuliuan)
~509
หินสมัย 2
(Series 2)
หินช่วงอายุ 4
(Stage 4)
~514
หินช่วงอายุ 3
(Stage 3)
~521
เทอร์เรนูเวียน
(Terreneuvian)
หินช่วงอายุ 2
(Stage 2)
~529
ฟอร์จูเนียน
(Fortunian)
~541 ± 1.0*
โพรเทอโรโซอิก[e]
(Proterozoic)
นีโอโพรเทอโรโซอิก
(Neoproterozoic)
อีดีแอคารัน
(Ediacaran)
ซากดึกดำบรรพ์ในสภาพดีของสัตว์หลายเซลล์พวกแรก, ชีวชาติยุคอีดีแอคารันอุดมสมบูรณ์ไปในทะเลทั่วโลก อาจปรากฏขึ้นภายหลังการระเบิดของสายพันธุ์ซึ่งอาจเกิดจากเหตุการณ์ออกซิเดชันครั้งใหญ่[62], เวนโดซัว (ไม่ทราบความใกล้เคียงในสัตว์) ไนดาเรีย และ ไบลาทีเรียพวกแรก, พวกเวนโดซัวปริศนารวมถึงสิ่งมีชีวิตอ่อนนุ่มหลายชนิดที่มีลักษณะเป็นแผ่น กระเป๋า หรือ ฟูก (เช่น ดิกคินโซเนีย), ซากดึกดำบรรพ์ร่องรอยทั่วไปของสิ่งมีชีวิตคล้ายหนอน เช่น เทรปทิคนัส ฯลฯ, การก่อเทือกเขาทาโคนิกในทวีปอเมริกาเหนือ, การก่อเทือกเขาของเทือกเขาอราวลีในอนุทวีปอินเดีย, การก่อเทือกเขาแพน-แอฟริกาเริ่มต้นขึ้น นำไปสู่การก่อตัวของมหาทวีปแพนโนเชียในยุคอีดีแอคารันซึ่งเป็นมหาทวีปที่มีอายุสั้น โดยแตกตัวไปในช่วงปลายของยุคเป็นทวีปลอเรนเชีย บอลติกา ไซบีเรีย และ กอนด์วานา, การก่อเทือกเขาปีเตอร์แมนน์ในทวีปออสเตรเลีย, การก่อเทือกเขาเบียร์ดมอร์ในทวีปแอนตาร์กติกา (633–620 ล้านปีก่อน), ชั้นโอโซนก่อตัวขึ้น, ระดับของแร่ในมหาสมุทรเพิ่มขึ้น ~635*
ไครโอเจเนียน
(Cryogenian)
อาจเกิดยุค "โลกบอลหิมะ" ขึ้น, ซากดึกดำบรรพ์ยังคงพบได้ยาก, มวลแผ่นดินโรดิเนียเริ่มแตกออก, การก่อเทือกเขารูเกอร์ตอนปลาย / นิมรอดในทวีปแอนตาร์กติกาลดลง, ซากดึกดำบรรพ์แรกของสัตว์ที่ไม่มีข้อโต้แย้ง, สิ่งที่สงสัยว่าเป็นพวกเห็ดราบก[63] และ สเตรปโตไฟตา[64] แรก, ~720[f]
โทเนียน
(Tonian)
มหาทวีปโรดิเนียยังคงปรากฏอยู่, การก่อเทือกเขาสวีโคนอร์วีเจียนสิ้นสุดลง, การก่อเทือกเขาเกรนวิลล์ในทวีปอเมริกาเหนือลดลง, การก่อเทือกเขารูเกอร์ตอนปลาย / นิมรอดในทวีปแอนตาร์กติกา (1,000 ± 150 ล้านปีก่อน), การก่อเทือกเขาเอ็ดมันเดียน (ประมาณ 920–850 ล้านปีก่อน) แกสคอยน์คอมเพล็กซ์ เวสเทิร์นออสเตรเลีย, การทับถมกันของมหาบริเวณแอดิเลดและมหาบริเวณเซนทราเลียนเริ่มต้นขึ้นในทวีปออสเตรเลีย, สิ่งที่สงสัยว่าเป็นพวกสัตว์ (จากโฮโลซัว) และผืดสาหร่ายบกพวกแรก, เหตุการณ์เอนโดซืมไบโอติกหลายครั้งเกี่ยวกับสาหร่ายสีแดงและเขียวเกิดขึ้น มีการถ่ายโอนพลาสทิดไปยังออโครไฟตา (เช่น ไดอะตอม สาหร่ายสีน้ำตาล) ไดโนแฟลกเจลเลต คริปโตไฟซีเอ แฮปโตไฟต์ และ ยูกลีนิด (เหตุการณ์อาจเริ่มต้นขึ้นในมหายุคมีโซโพรเทอโรโซอิก)[65] ขณะที่รีทาเรียพวกแรก (เช่น ฟอรามินิเฟอรา) ยังคงปรากฏอยู่ พวกยูแคริโอต ได้แก่ สาหร่าย ยูแคริโอโวริก และ รูปแบบสิ่งมีชีวิตผลิตแร่แพร่จำนวนสายพันธุ์อย่างรวดเร็ว, ซากดึกดำบรรพ์ร่องรอยของยูแคริโอตหลายเซลล์อย่างง่าย 1000[f]
มีโซโพรเทอโรโซอิก
(Mesoproterozoic)
สเทเนียน
(Stenian)
แถบหินแปรลดลงเป็นอย่างมากเนื่องจากการก่อเทือกเขาของมหาทวีปโรดิเนียที่เริ่มต้นขึ้น ซึ่งถูกล้อมรอบโดยมหาสมุทรแพน-แอฟริกา, การก่อเทือกเขาสวีโคนอร์วีเจียนเริ่มต้นขึ้น, การก่อเทือกเขารูเกอร์ตอนปลาย / นิมรอดในทวีปแอนตาร์กติกาอาจเริ่มต้นขึ้น, การก่อเทือกเขามัสเกรฟ (ประมาณ 1,080 ล้านปีก่อน) ในบล็อกรอยเลื่อนมัสเกรฟ เซนทรัลออสเตรเลีย, สโตรมาโตไลต์ลดลงเมื่อสาหร่ายเพิ่มจำนวนขึ้นอย่างรวดเร็ว 1200[f]
เอกเทเซียน
(Ectasian)
สิ่งปกคลุมลานยังคงขยายไปอย่างต่อเนื่อง, กลุ่มสาหร่ายสีเขียวอยู่ในทะเล, การก่อเทือกเขาเกรนวิลล์ในทวีปอเมริกาเหนือ, มหาทวีปโคลัมเบียแตกออก 1400[f]
คาลิมเมียน
(Calymmian)
สิ่งปกคลุมลานขยายตัวออก, การก่อเทือกเขาบาร์รามันดีในแอ่งแม็คอาเทอร์ นอร์ทเทิร์นออสเตรเลีย และการก่อเทือกเขาอีซา (ประมาณ 1,600 ล้านปีก่อน) ในกลุ่มรอยเลื่อนเขาอีซา รัฐควีนส์แลนด์, อาร์คีพลาสติดา (ยูแคริโอตพวกแรกที่มีพลาสติดจากไซยาโนแบคทีเรีย เช่น สาหร่ายสีแดง และ สาหร่ายสีเขียว) และ โอพิสโธคอนตา (จะเจริญไปเป็นเห็ดราและโฮโลซัวพวกแรก) พวกแรก, อาคริทาร์ช (อาจเป็นสาหร่ายทะเลที่ยังคงหลงเหลือ) เริ่มปรากฏเป็นบันทึกซากดึกดำบรรพ์ 1600[f]
แพลีโอโพรเทอโรโซอิก
(Paleoproterozoic)
สตาทีเรียน
(Statherian)
สิ่งมีชีวิตเซลล์เดียวซับซ้อนพวกแรก ได้แก่ โพรทิสต์ที่มีหลายนิวเคลียส และ ระบบเอนโดเมมเบรน, มหาทวีปโคลอมเบียก่อตัวขึ้นเป็นมหาทวีปแรกสุดอันดับที่สองที่ไม่มีข้อโต้แย้ง, การก่อเทือกเขาคิมบันในทวีปออสเตรเลียสิ้นสุดลง, มหาทวีปยาปุงกูในหินฐานธรณียิลการ์นในเวสเทิร์นออสเตรเลีย, การก่อเทือกเขาแมงการูนเมื่อ 1,680–1,620 ล้านปีก่อนในแกสคอยน์คอมเพล็กซ์ เวสเทิร์นออสเตรเลีย, การก่อเทือกเขาคารารัน (1,650 ล้านปีก่อน) ในหินฐานธรณีกอว์เลอร์ ออสเตรเลียใต้, ระดับออกซิเจนลดลงอีกครั้ง 1800[f]
ออโรซีเรียน
(Orosirian)
ชั้นบรรยากาศเริ่มอุดมไปด้วยออกซิเจน ขณะที่สโตรมาโตไลต์ไซยาโนแบคทีเรียปรากฏขึ้น, แอ่งเฟรเดอฟอร์ตและแอ่งซัดเบอรีถูกดาวเคราะห์น้อยพุ่งชน, เกิดการก่อเทือกเขาอย่างมาก, การก่อเทือกเขาเพโนเคียนและการก่อเทือกเขาทรานส์-ฮัดสันในทวีปอเมริกาเหนือ, การก่อเทือกเขารูเกอร์ตอนต้นในทวีปแอนตาร์กติกา (2,000–1,700 ล้านปีก่อน), การก่อเทือกเขาเกลนเบิร์กในเกลนเบิร์กเทอร์เรน ทวีปออสเตรเลีย (ประมาณ 2,005–1,920 ล้านปีก่อน), การก่อเทือกเขาคิมบันในหินฐานธรณีกอว์เลอร์ในทวีปออสเตรเลียเริ่มต้นขึ้น 2050[f]
ไรเอเซียน
(Rhyacian)
รูปแบบการแทรกชันอัคนีซับซ้อนบุชวีลด์, การเปลี่ยนสภาพโดยธารน้ำแข็งฮูโรเนียน, สิ่งต้องสงสัยว่าเป็นยูแคริโอตพวกแรก, ชีวชาติฟรานเซวิลเลียนแบบหลายเซลล์, เคนอร์แลนด์แยกตัวออก 2300[f]
ไซดีเรียน
(Siderian)
วิกฤตการณ์ออกซิเจน (เนื่องจากไซยาโนแบคทีเรีย) ทำให้เกิดออกซิเจนเพิ่มขึ้น, การก่อเทือกเขาสลีเฟิร์ดในหินฐานธรณีกอว์เลอร์ ทวีปออสเตรเลีย เมื่อ 2,440–2,420 ล้านปีก่อน 2500[f]
อาร์เคียน
(Archean)
นีโออาร์เคียน
(Neoarchean)
หินฐานธรณียุคใหม่ส่วนมากมีเสถียรภาพ เป็นไปได้ว่าอาจเกิดเหตุการณ์เนื้อโลกตลบทับ, การก่อเทือกเขาอินเซลล์เมื่อ 2,650 ± 150 ล้านปีก่อน, แถบกรีนสโตนอาบิทีบีที่ปรากฏทุกวันนี้ในรัฐออนแทรีโอและรัฐควิเบกเริ่มก่อตัวขึ้นและเข้าสู่เสถียรภาพเมื่อ 2,600 ล้านปีก่อน, มหาทวีปเคนอร์แลนด์เป็นมหาทวีปแรกที่ไม่มีข้อโต้แย้ง และโพรแคริโอตบกพวกแรก 2800[f]
มีโซอาร์เคียน
(Mesoarchean)
สโตรมาโตไลต์ (ซึ่งเป็นไปได้ว่าจะเป็นกลุ่มของแบคทีเรียอาศัยพลังแสง เช่น ไซยาโนแบคทีเรีย) พวกแรก, มาโครฟอสซิลที่เก่าแก่ที่สุด, การก่อเทือกเขาฮัมโบล์ดในทวีปแอนตาร์กติกา, เบล็กริเวอร์เมกะคัลเดราคอมเพล็กซ์เริ่มต้นก่อตัวขึ้นซึ่งปัจจุบันอยู่ในรัฐออนแทรีโอและรัฐควิเบก โดยสิ้นสุดลงประมาณ 2,696 ล้านปีก่อน 3200[f]
พาลีโออาร์เคียน
(Paleoarchean)
อาร์เคียโพรแคริโอต (เช่น เมทาโนเจน) และ แบคทีเรีย (เช่น ไซยาโนแบคทีเรีย) ขยายจำนวนสายพันธุ์ขึ้นอย่างรวดเร็วท่ามกลางไวรัสยุคแรก, แบคทีเรียสร้างออกซิเจนที่รู้จักพวกแรก, ไมโครฟอสซิลที่แน่ชัดที่เก่าที่สุด, ผืดจุลชีพพวกแรก, หินฐานธรณีที่เก่าที่สุดบนโลก (เช่น หินฐานทวีปแคนาดาและหินฐานธรณีพิลบารา) อาจก่อตัวขึ้นในช่วงยุคนี้[g], การก่อเทือกเขาเรย์เนอร์ในทวีปแอนตาร์กติกา 3600[f]
อีโออาร์เคียน
(Eoarchean)
สิ่งมีชีวิตที่ไม่มีข้อโต้แย้งพวกแรก โดยเป็นโปรโตเซลล์แรกที่มียีนเป็นRNAเมื่อประมาณ 4,000 ล้านปีก่อน หลังจากที่เซลล์แท้ (โพรแคริโอต) วิวัฒนาการขึ้นพร้อมยีนที่เป็นโปรตีนและดีเอ็นเอเมื่อประมาณ 3,800 ล้านปีก่อน, การระดมชนหนักครั้งหลังสิ้นสุดลง, การก่อเทือกเขาเนเปียร์ในทวีปแอนตาร์กติกาเมื่อ 4,000 ± 200 ล้านปีก่อน ~4000
เฮเดียน[e][note 5]
(Hadean)
การก่อตัวขึ้นของหินต้นกำเนิด (protolith) ของหินที่เก่าแก่ที่สุดที่เป็นที่รู้จัก (หินไนส์อะคัสตา) อายุประมาณ 4,031 ถึง 3,580 ล้านปีก่อน[66][67], การปรากฏขึ้นครั้งแรกของการแปรสัณฐานแผ่นธรณีภาคที่เป็นไปได้, สมมติฐานรูปแบบของสิ่งมีชีวิตแรก, สิ้นสุดการระดมชนหนักครั้งต้น, แร่เก่าแก่ที่สุดที่เป็นที่รู้จัก (เพทาย อายุ 4,408 ± 8 ล้านปีก่อน)[68], ดาวเคราะห์น้อยและดาวหางนำน้ำมาสู่โลก เกิดเป็นมหาสมุทรแรกขึ้น, กำเนิดดวงจันทร์ (4,533 ถึง 4,527 ล้านปีก่อน) ซึ่งอาจเกิดจากสมมติฐานการชนครั้งใหญ่, กำเนิดโลก (4,570 ถึง 4,567.17 ล้านปีก่อน) ~4600 [note 6]

การเสนอเส้นเวลาของพรีแคมเบรียน[แก้]

หนังสือ Geologic Time Scale 2012 ของ ICS ซึ่งมีมาตรกาลใหม่ซึ่งได้รับอนุมัติ ยังมีการนำเสนอข้อเสนอเพื่อแก้ไขมาตรกาลของพรีแคมเบรียน เพื่อให้สะท้อนถึงเหตุการณ์สำคัญต่าง ๆ เช่น การก่อตัวของโลก หรือ เหตุการณ์ออกซิเดชันครั้งใหญ่ ขณะเดียวกันก็ยังคงไว้ซึ่งการตั้งชื่อการลำดับชั้นหินตามอายุกาลก่อนหน้าส่วนใหญ่ไว้สำหรับช่วงเวลาที่เกี่ยวข้อง[69]

แสดงตามมาตราส่วน:

AcastanIsuanVaalbaranPongolanMethanianSiderianOxygenianEukaryianColumbianRodinianCryogenianEdiacaranมหายุคคาออสเทียนมหายุคพาลีโออาร์เคียนมหายุคมีโซอาร์เคียนมหายุคนีโออาร์เคียนมหายุคแพลีโอโพรเทอโรโซอิกมหายุคมีโซโพรเทอโรโซอิกมหายุคนีโอโพรเทอโรโซอิกบรมยุคเฮเดียนบรมยุคอาร์เคียนบรมยุคโพรเทอโรโซอิกพรีแคมเบรียน

เปรียบเทียบกับเส้นเวลาปัจจุบัน ซึ่งไม่ได้แสดงตามมาตราส่วน:

SiderianRhyacianOrosirianStatherianCalymmianEctasianStenianTonianCryogenianEdiacaranEoarcheanPaleoarcheanMesoarcheanNeoarcheanPaleoproterozoicMesoproterozoicNeoproterozoicHadeanArcheanProterozoicPrecambrian

เชิงอรรถ[แก้]

  1. เป็นที่ทราบกันดีว่าหินชั้นบางชนิดนั้นมิได้มีการวางตัวในแนวนอนอย่างสมบูรณ์แบบ แต่อย่างไรก็ตาม หลักการนี้ยังคงถือได้ว่าเป็นแนวคิดที่มีประโยชน์
  2. ช่วงเวลาของหน่วยธรณีกาลนั้นแตกต่างกันอย่างมาก และไม่มีข้อจำกัดด้านตัวเลขเกี่ยวกับเวลาที่สามารถแสดงได้ โดยถูกจำกัดเพียงช่วงเวลาของหน่วยที่มีอันดับสูงกว่าซึ่งหน่วยดังกล่าวอยู่ภายใต้ และขอบเขตด้านการลำดับชั้นหินตามอายุกาลที่กำหนดขึ้นไว้
  3. พรีแคมเบรียน เป็นศัพท์ทางธรณีวิทยาที่ไม่เป็นทางการสำหรับช่วงเวลาก่อนแคมเบรียน
  4. เทอร์เทียรีเป็นชื่อหินยุค/ยุคทางธรณีวิทยาที่ล้าสมัย กินเวลาตั้งแต่ 66 ล้านปีก่อนถึง 2.6 ล้านปีก่อน ไม่สามารถเทียบได้กับแผนภูมิ ICC ปัจจุบัน แต่อาจเทียบเคียงได้กับหินยุค/ยุคพาลีโอจีนและนีโอจีน
  5. แม้ว่าจะมีการใช้งานกันอย่างทั่วไป แต่บรมยุคเฮเดียนนั้นไม่ถูกจัดเป็นบรมยุคอย่างเป็นทางการ
  6. อ้างอิงผิดพลาด: ป้ายระบุ <ref> ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อ absolute-age

อ้างอิง[แก้]

  1. 1.0 1.1 "Statutes". stratigraphy.org. International Commission on Stratigraphy. สืบค้นเมื่อ 2022-04-05.
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Cohen, K.M.; Finney, S.C.; Gibbard, P.L.; Fan, J.-X. (2013-09-01). "The ICS International Chronostratigraphic Chart". Episodes (ภาษาอังกฤษ) (updated ed.). 36 (3): 199–204. doi:10.18814/epiiugs/2013/v36i3/002. ISSN 0705-3797.
  3. 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 Van Kranendonk, Martin J.; Altermann, Wladyslaw; Beard, Brian L.; Hoffman, Paul F.; Johnson, Clark M.; Kasting, James F.; Melezhik, Victor A.; Nutman, Allen P. (2012), "A Chronostratigraphic Division of the Precambrian", The Geologic Time Scale (ภาษาอังกฤษ), Elsevier, pp. 299–392, doi:10.1016/b978-0-444-59425-9.00016-0, ISBN 978-0-444-59425-9, สืบค้นเมื่อ 2022-04-05
  4. "International Commission on Stratigraphy". International Geological Time Scale. สืบค้นเมื่อ 5 June 2022.
  5. Dalrymple, G. Brent (2001). "The age of the Earth in the twentieth century: a problem (mostly) solved". Special Publications, Geological Society of London. 190 (1): 205–221. Bibcode:2001GSLSP.190..205D. doi:10.1144/GSL.SP.2001.190.01.14. S2CID 130092094.
  6. 6.0 6.1 Shields, Graham A.; Strachan, Robin A.; Porter, Susannah M.; Halverson, Galen P.; Macdonald, Francis A.; Plumb, Kenneth A.; de Alvarenga, Carlos J.; Banerjee, Dhiraj M.; Bekker, Andrey; Bleeker, Wouter; Brasier, Alexander (2022). "A template for an improved rock-based subdivision of the pre-Cryogenian timescale". Journal of the Geological Society (ภาษาอังกฤษ). 179 (1): jgs2020–222. doi:10.1144/jgs2020-222. ISSN 0016-7649. S2CID 236285974.
  7. 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 7.10 7.11 "Chapter 9. Chronostratigraphic Units". stratigraphy.org. International Commission on Stratigraphy. สืบค้นเมื่อ 2022-04-02.
  8. 8.0 8.1 8.2 "Chapter 3. Definitions and Procedures". stratigraphy.org. International Commission on Stratigraphy. สืบค้นเมื่อ 2022-04-02.
  9. "Global Boundary Stratotype Section and Points". stratigraphy.org. International Commission on Stratigraphy. สืบค้นเมื่อ 2022-04-02.
  10. Knoll, Andrew; Walter, Malcolm; Narbonne, Guy; Christie-Blick, Nicholas (2006). "The Ediacaran Period: a new addition to the geologic time scale". Lethaia (ภาษาอังกฤษ). 39 (1): 13–30. doi:10.1080/00241160500409223.
  11. Remane, Jürgen; Bassett, Michael G; Cowie, John W; Gohrbandt, Klaus H; Lane, H Richard; Michelsen, Olaf; Naiwen, Wang; the cooperation of members of ICS (1996-09-01). "Revised guidelines for the establishment of global chronostratigraphic standards by the International Commission on Stratigraphy (ICS)". Episodes (ภาษาอังกฤษ). 19 (3): 77–81. doi:10.18814/epiiugs/1996/v19i3/007. ISSN 0705-3797.
  12. 12.0 12.1 12.2 12.3 12.4 12.5 Michael Allaby (2020). A dictionary of geology and earth sciences (Fifth ed.). Oxford. ISBN 978-0-19-187490-1. OCLC 1137380460.
  13. Aubry, Marie-Pierre; Piller, Werner E.; Gibbard, Philip L.; Harper, David A. T.; Finney, Stanley C. (2022-03-01). "Ratification of subseries/subepochs as formal rank/units in international chronostratigraphy". Episodes (ภาษาอังกฤษ). 45 (1): 97–99. doi:10.18814/epiiugs/2021/021016. ISSN 0705-3797. S2CID 240772165.
  14. Desnoyers, J. (1829). "Observations sur un ensemble de dépôts marins plus récents que les terrains tertiaires du bassin de la Seine, et constituant une formation géologique distincte; précédées d'un aperçu de la nonsimultanéité des bassins tertiares" [Observations on a set of marine deposits [that are] more recent than the tertiary terrains of the Seine basin and [that] constitute a distinct geological formation; preceded by an outline of the non-simultaneity of tertiary basins]. Annales des Sciences Naturelles (ภาษาฝรั่งเศส). 16: 171–214, 402–491. From p. 193: "Ce que je désirerais ... dont il faut également les distinguer." (What I would desire to prove above all is that the series of tertiary deposits continued – and even began in the more recent basins – for a long time, perhaps after that of the Seine had been completely filled, and that these later formations – Quaternary (1), so to say – should not retain the name of alluvial deposits any more than the true and ancient tertiary deposits, from which they must also be distinguished.) However, on the very same page, Desnoyers abandoned the use of the term "Quaternary" because the distinction between Quaternary and Tertiary deposits wasn't clear. From p. 193: "La crainte de voir mal comprise ... que ceux du bassin de la Seine." (The fear of seeing my opinion in this regard be misunderstood or exaggerated, has made me abandon the word "quaternary", which at first I had wanted to apply to all deposits more recent than those of the Seine basin.)
  15. d'Halloy, d'O., J.-J. (1822). "Observations sur un essai de carte géologique de la France, des Pays-Bas, et des contrées voisines" [Observations on a trial geological map of France, the Low Countries, and neighboring countries]. Annales des Mines. 7: 353–376.{{cite journal}}: CS1 maint: multiple names: authors list (ลิงก์) From page 373: "La troisième, qui correspond à ce qu'on a déja appelé formation de la craie, sera désigné par le nom de terrain crétacé." (The third, which corresponds to what was already called the "chalk formation", will be designated by the name "chalky terrain".)
  16. Humboldt, Alexander von (1799). Ueber die unterirdischen Gasarten und die Mittel ihren Nachtheil zu vermindern: ein Beytrag zur Physik der praktischen Bergbaukunde (ภาษาเยอรมัน). Vieweg.
  17. Brongniart, Alexandre (1770-1847) Auteur du texte (1829). Tableau des terrains qui composent l'écorce du globe ou Essai sur la structure de la partie connue de la terre . Par Alexandre Brongniart,... (ภาษาฝรั่งเศส).
  18. Ogg, J.G.; Hinnov, L.A.; Huang, C. (2012), "Jurassic", The Geologic Time Scale (ภาษาอังกฤษ), Elsevier, pp. 731–791, doi:10.1016/b978-0-444-59425-9.00026-3, ISBN 978-0-444-59425-9, สืบค้นเมื่อ 2022-05-01
  19. Murchison; Murchison, Sir Roderick Impey; Verneuil; Keyserling, Graf Alexander (1842). On the Geological Structure of the Central and Southern Regions of Russia in Europe, and of the Ural Mountains (ภาษาอังกฤษ). Print. by R. and J.E. Taylor.
  20. Phillips, John (1835). Illustrations of the Geology of Yorkshire: Or, A Description of the Strata and Organic Remains: Accompanied by a Geological Map, Sections and Plates of the Fossil Plants and Animals ... (ภาษาอังกฤษ). J. Murray.
  21. Sedgwick, A.; Murchison, R. I. (1840-01-01). "XLIII.--On the Physical Structure of Devonshire, and on the Subdivisions and Geological Relations of its older stratified Deposits, &c". Transactions of the Geological Society of London (ภาษาอังกฤษ). s2-5 (3): 633–703. doi:10.1144/transgslb.5.3.633. ISSN 2042-5295. S2CID 128475487.
  22. Murchison, Roderick Impey (1835). "VII. On the silurian system of rocks". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science (ภาษาอังกฤษ). 7 (37): 46–52. doi:10.1080/14786443508648654. ISSN 1941-5966.
  23. Lapworth, Charles (1879). "I.—On the Tripartite Classification of the Lower Palæozoic Rocks". Geological Magazine (ภาษาอังกฤษ). 6 (1): 1–15. doi:10.1017/S0016756800156560. ISSN 0016-7568. S2CID 129165105.
  24. Bassett, Michael G. (1979-06-01). "100 Years of Ordovician Geology". Episodes (ภาษาอังกฤษ). 2 (2): 18–21. doi:10.18814/epiiugs/1979/v2i2/003. ISSN 0705-3797.
  25.  Chisholm, Hugh, บ.ก. (1911). "Cambria" . สารานุกรมบริตานิกา ค.ศ. 1911 (11 ed.). สำนักพิมพ์มหาวิทยาลัยเคมบริดจ์.
  26. Butcher, Andy (26 May 2004). "Re: Ediacaran". LISTSERV 16.0 - AUSTRALIAN-LINGUISTICS-L Archives. คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 23 October 2007. สืบค้นเมื่อ 19 July 2011.
  27. "Place Details: Ediacara Fossil Site – Nilpena, Parachilna, SA, Australia". Department of Sustainability, Environment, Water, Population and Communities. Australian Heritage Database. Commonwealth of Australia. เก็บจากแหล่งเดิมเมื่อ 3 มิถุนายน 2011. สืบค้นเมื่อ 19 กรกฎาคม 2011.
  28. Janke, Paul R. (1999). "Correlating Earth's History". Worldwide Museum of Natural History.
  29. Rudwick, M. J. S. (1985). The Meaning of Fossils: Episodes in the History of Palaeontology. University of Chicago Press. p. 24. ISBN 978-0-226-73103-2.
  30. Fischer, Alfred G.; Garrison, Robert E. (2009). "The role of the Mediterranean region in the development of sedimentary geology: A historical overview". Sedimentology. 56 (1): 3. Bibcode:2009Sedim..56....3F. doi:10.1111/j.1365-3091.2008.01009.x.
  31. Sivin, Nathan (1995). Science in Ancient China: Researches and Reflections. Brookfield, Vermont: Ashgate Publishing Variorum series. III, 23–24.
  32. Hutton, James (2013). "Theory of the Earth; or an investigation of the laws observable in the composition, dissolution, and restoration of land upon the Globe". Transactions of the Royal Society of Edinburgh (ตีพิมพ์ 1788). 1 (2): 209–308. doi:10.1017/s0080456800029227. สืบค้นเมื่อ 2016-09-06.
  33. McPhee, John (1981). Basin and Range. New York: Farrar, Straus and Giroux. ISBN 9780374109141.
  34. "Geologic Time Scale". EnchantedLearning.com.
  35. "How the discovery of geologic time changed our view of the world". Bristol University.
  36. Martinsson, Anders; Bassett, Michael G. (1980). "International Commission on Stratigraphy". Lethaia. 13 (1): 26. doi:10.1111/j.1502-3931.1980.tb01026.x.
  37. อ้างอิงผิดพลาด: ป้ายระบุ <ref> ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อ The Geologic Time Scale
  38. Cox, Simon J. D.; Richard, Stephen M. (2005). "A formal model for the geologic time scale and global stratotype section and point, compatible with geospatial information transfer standards". Geosphere. 1 (3): 119–137. Bibcode:2005Geosp...1..119C. doi:10.1130/GES00022.1. สืบค้นเมื่อ 31 December 2012.
  39. Davydov, V.I.; Korn, D.; Schmitz, M.D.; Gradstein, F.M.; Hammer, O. (2012), "The Carboniferous Period", The Geologic Time Scale (ภาษาอังกฤษ), Elsevier, pp. 603–651, doi:10.1016/b978-0-444-59425-9.00023-8, ISBN 978-0-444-59425-9, สืบค้นเมื่อ 2021-06-17
  40. Lucas, Spencer G. (6 November 2018). "The GSSP Method of Chronostratigraphy: A Critical Review". Frontiers in Earth Science. 6: 191. Bibcode:2018FrEaS...6..191L. doi:10.3389/feart.2018.00191.
  41. Stromberg, Joseph. "What Is the Anthropocene and Are We in It?". Smithsonian Magazine (ภาษาอังกฤษ). สืบค้นเมื่อ 2021-01-15.
  42. "Anthropocene: Age of Man – Pictures, More From National Geographic Magazine". ngm.nationalgeographic.com. คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2016-08-22. สืบค้นเมื่อ 2015-09-22.
  43. Stromberg, Joseph. "What is the Anthropocene and Are We in It?". สืบค้นเมื่อ 2015-09-22.
  44. 44.0 44.1 "Working Group on the 'Anthropocene'". Subcommission on Quaternary Stratigraphy. International Commission on Stratigraphy.
  45. "The Anthropocene epoch: scientists declare dawn of human-influenced age". TheGuardian.com. 29 August 2016.
  46. George Dvorsky. "New Evidence Suggests Human Beings Are a Geological Force of Nature". Gizmodo.com. สืบค้นเมื่อ 2016-10-15.
  47. Knox, R.W.O’B.; Pearson, P.N.; Barry, T.L.; Condon, D.J.; Cope, J.C.W.; Gale, A.S.; Gibbard, P.L.; Kerr, A.C.; Hounslow, M.W.; Powell, J.H.; Rawson, P.F.; Smith, A.G.; Waters, C.N.; Zalasiewicz, J. (June 2012). "Examining the case for the use of the Tertiary as a formal period or informal unit". Proceedings of the Geologists' Association. 123 (3): 390–393. doi:10.1016/j.pgeola.2012.05.004.
  48. Gibbard, Philip L.; Smith, Alan G.; Zalasiewicz, Jan A.; Barry, Tiffany L.; Cantrill, David; Coe, Angela L.; Cope, John C. W.; Gale, Andrew S.; Gregory, F. John; Powell, John H.; Rawson, Peter F.; Stone, Philip; Waters, Colin N. (28 June 2008). "What status for the Quaternary?". Boreas. 34 (1): 1–6. doi:10.1111/j.1502-3885.2005.tb01000.x.
  49. See, for example, Sahni, B. (1940). "Presidential Address: The Deccan Traps: An Episode of the Tertiary Era". Current Science. 9 (1): 47–54. JSTOR 24204747.
  50. "International Stratigraphic Chart". International Commission on Stratigraphy. คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 30 May 2014.
  51. อ้างอิงผิดพลาด: ป้ายระบุ <ref> ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อ ICSchronostrat
  52. Cox, Simon J. D. "SPARQL endpoint for CGI timescale service". คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2014-08-06. สืบค้นเมื่อ 2014-08-03.
  53. Cox, Simon J. D.; Richard, Stephen M. (2014). "A geologic timescale ontology and service". Earth Science Informatics. 8: 5–19. doi:10.1007/s12145-014-0170-6. S2CID 42345393.
  54. "Archived copy" (PDF). คลังข้อมูลเก่าเก็บจากแหล่งเดิม (PDF)เมื่อ 29 ธันวาคม 2009. สืบค้นเมื่อ 23 ธันวาคม 2009.{{cite web}}: CS1 maint: archived copy as title (ลิงก์)
  55. C. Hoag, J-C. Svenning African environmental change from the Pleistocene to the Anthropocene Annu. Rev. Environ. Resour., 42 (2017), pp. 27-54, https://doi.org/10.1146/annurev-environ-102016-060653
  56. Bartoli, G; Sarnthein, M; Weinelt, M; Erlenkeuser, H; Garbe-Schönberg, D; Lea, D.W (2005). "Final closure of Panama and the onset of northern hemisphere glaciation". Earth and Planetary Science Letters. 237 (1–2): 33–44. Bibcode:2005E&PSL.237...33B. doi:10.1016/j.epsl.2005.06.020.
  57. 57.0 57.1 Tyson, Peter (October 2009). "NOVA, Aliens from Earth: Who's who in human evolution". PBS. สืบค้นเมื่อ 2009-10-08.
  58. https://digitalcommons.bryant.edu/cgi/viewcontent.cgi?article=1010&context=honors_science[URL เปล่า]
  59. 59.0 59.1 59.2 59.3 Royer, Dana L. (2006). "CO2-forced climate thresholds during the Phanerozoic" (PDF). Geochimica et Cosmochimica Acta. 70 (23): 5665–75. Bibcode:2006GeCoA..70.5665R. doi:10.1016/j.gca.2005.11.031. คลังข้อมูลเก่าเก็บจากแหล่งเดิม (PDF)เมื่อ 27 September 2019. สืบค้นเมื่อ 6 August 2015.
  60. "Here's What the Last Common Ancestor of Apes and Humans Looked Like". Live Science.
  61. Deconto, Robert M.; Pollard, David (2003). "Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2". Nature. 421 (6920): 245–249. Bibcode:2003Natur.421..245D. doi:10.1038/nature01290. PMID 12529638. S2CID 4326971.
  62. Williams, J.J., Mills, B.J.W. & Lenton, T.M. A tectonically driven Ediacaran oxygenation event. Nat Commun 10, 2690 (2019). https://doi.org/10.1038/s41467-019-10286-x
  63. Naranjo‐Ortiz, Miguel A.; Gabaldón, Toni (2019-04-25). "Fungal evolution: major ecological adaptations and evolutionary transitions". Biological Reviews of the Cambridge Philosophical Society. Cambridge Philosophical Society (Wiley). 94 (4): 1443–1476. doi:10.1111/brv.12510. ISSN 1464-7931. PMC 6850671. PMID 31021528.
  64. Zarsky, J. D., Zarsky, V., Hanacek, M., & Zarsky, V. (2021, July 21). Cryogenian glacial habitats as a plant terrestrialization cradle – the origin of the anydrophytes and Zygnematophyceae split. https://doi.org/10.3389/fpls.2021.735020
  65. Hwan Su Yoon, Jeremiah D. Hackett, Claudia Ciniglia, Gabriele Pinto, Debashish Bhattacharya, A Molecular Timeline for the Origin of Photosynthetic Eukaryotes, Molecular Biology and Evolution, Volume 21, Issue 5, May 2004, Pages 809–818, https://doi.org/10.1093/molbev/msh075
  66. Bowring, Samuel A.; Williams, Ian S. (1999). "Priscoan (4.00-4.03 Ga) orthogneisses from northwestern Canada". Contributions to Mineralogy and Petrology. 134 (1): 3. Bibcode:1999CoMP..134....3B. doi:10.1007/s004100050465. S2CID 128376754.
  67. Iizuka, Tsuyoshi; Komiya, Tsuyoshi; Maruyama, Shigenori (2007), "Chapter 3.1 The Early Archean Acasta Gneiss Complex: Geological, Geochronological and Isotopic Studies and Implications for Early Crustal Evolution", Developments in Precambrian Geology (ภาษาอังกฤษ), Elsevier, vol. 15, pp. 127–147, doi:10.1016/s0166-2635(07)15031-3, ISBN 978-0-444-52810-0, สืบค้นเมื่อ 2022-05-01
  68. Wilde, Simon A.; Valley, John W.; Peck, William H.; Graham, Colin M. (2001). "Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago". Nature (ภาษาอังกฤษ). 409 (6817): 175–178. doi:10.1038/35051550. ISSN 0028-0836. PMID 11196637. S2CID 4319774.
  69. 69.00 69.01 69.02 69.03 69.04 69.05 69.06 69.07 69.08 69.09 69.10 69.11 69.12 69.13 Van Kranendonk, Martin J. (2012). "16: A Chronostratigraphic Division of the Precambrian: Possibilities and Challenges". ใน Felix M. Gradstein; James G. Ogg; Mark D. Schmitz; abi M. Ogg (บ.ก.). The geologic time scale 2012 (1st ed.). Amsterdam: Elsevier. pp. 359–365. doi:10.1016/B978-0-444-59425-9.00016-0. ISBN 978-0-44-459425-9.
  70. 70.0 70.1 70.2 Goldblatt, C.; Zahnle, K. J.; Sleep, N. H.; Nisbet, E. G. (2010). "The Eons of Chaos and Hades". Solid Earth. 1 (1): 1–3. Bibcode:2010SolE....1....1G. doi:10.5194/se-1-1-2010.
  71. Chambers, John E. (July 2004). "Planetary accretion in the inner Solar System" (PDF). Earth and Planetary Science Letters. 223 (3–4): 241–252. Bibcode:2004E&PSL.223..241C. doi:10.1016/j.epsl.2004.04.031. คลังข้อมูลเก่าเก็บจากแหล่งเดิม (PDF)เมื่อ 2015-01-31. สืบค้นเมื่อ 2021-11-16.
  72. El Albani, Abderrazak; Bengtson, Stefan; Canfield, Donald E.; Riboulleau, Armelle; Rollion Bard, Claire; Macchiarelli, Roberto; และคณะ (2014). "The 2.1 Ga Old Francevillian Biota: Biogenicity, Taphonomy and Biodiversity". PLOS ONE. 9 (6): e99438. Bibcode:2014PLoSO...999438E. doi:10.1371/journal.pone.0099438. PMC 4070892. PMID 24963687.
  73. El Albani, Abderrazak; Bengtson, Stefan; Canfield, Donald E.; Bekker, Andrey; Macchiarelli, Roberto; Mazurier, Arnaud; Hammarlund, Emma U.; และคณะ (2010). "Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago" (PDF). Nature. 466 (7302): 100–104. Bibcode:2010Natur.466..100A. doi:10.1038/nature09166. PMID 20596019. S2CID 4331375.[ลิงก์เสีย]


อ้างอิงผิดพลาด: มีป้ายระบุ <ref> สำหรับกลุ่มชื่อ "lower-alpha" แต่ไม่พบป้ายระบุ <references group="lower-alpha"/> ที่สอดคล้องกัน