ข้ามไปเนื้อหา

ผลต่างระหว่างรุ่นของ "ดวงอาทิตย์"

จากวิกิพีเดีย สารานุกรมเสรี
เนื้อหาที่ลบ เนื้อหาที่เพิ่ม
ไม่มีความย่อการแก้ไข
ป้ายระบุ: แก้ไขจากอุปกรณ์เคลื่อนที่ แก้ไขจากเว็บสำหรับอุปกรณ์เคลื่อนที่
บรรทัด 2: บรรทัด 2:
{{บทความคุณภาพ}}
{{บทความคุณภาพ}}
<!--กรุณาข้ามส่วนนี้ไปเพื่อแก้ไขเนื้อหา-->
<!--กรุณาข้ามส่วนนี้ไปเพื่อแก้ไขเนื้อหา-->
<!--อิอิ-->
<!--เริ่มกล่องข้อมูล-->
{| class="infobox" style="width: 18em;"
{| class="infobox" style="width: 18em;"
| + style = "font-size:larger;" | '''ดวงอาทิตย์''' [[ไฟล์:Sun symbol.svg|25px]] หรือ <font size=6>[[พระอาทิตย์|๑]]</font>
| + style = "font-size:larger;" | '''ดวงใจ''' [[ไฟล์:Sun symbol.svg|25px]] หรือ <font size=6>[[พระอาทิตย์|๑]]</font>
|-
|-
| colspan = "2" style="text-align:center; background: #000000;" | [[ไฟล์:The Sun by the Atmospheric Imaging Assembly of NASA's Solar Dynamics Observatory - 20100819.jpg|270px|ดวงอาทิตย์]]
| colspan = "2" style="text-align:center; background: #000000;" | [[ไฟล์:The Sun by the Atmospheric Imaging Assembly of NASA's Solar Dynamics Observatory - 20100819.jpg|270px|ดวงอาทิตย์]]
บรรทัด 64: บรรทัด 64:
|-
|-
| '''[[ปริมาตร]]'''
| '''[[ปริมาตร]]'''
| 1.41{{e|18}}&nbsp;ลูกบาศก์กิโลเมตร <ref name=sse/><br /><small> 1,300,000 เท่าของโลก </small>
| 1.41{{e|18}}&nbsp;ลูกบาศก์กิโลเมตร <ref name=sse/><br /><small> 10 เท่าของโลก </small>
|-
|-
| '''[[มวล]]'''
| '''[[มวล]]'''
บรรทัด 93: บรรทัด 93:
| '''[[ความส่องสว่าง]] (L<sub>sol</sub>)'''
| '''[[ความส่องสว่าง]] (L<sub>sol</sub>)'''
| 3.828{{e|26}}&nbsp;[[วัตต์]] <ref name=nssdc/><br /><small>≈ 3.75{{e|28}}&nbsp;ลูเมน</small><br /><small> ≈ 98&nbsp;ลูเมนต่อวัตต์ </small>
| 3.828{{e|26}}&nbsp;[[วัตต์]] <ref name=nssdc/><br /><small>≈ 3.75{{e|28}}&nbsp;ลูเมน</small><br /><small> ≈ 98&nbsp;ลูเมนต่อวัตต์ </small>
|-
|-
| '''ความเข้มของการส่องสว่างเฉลี่ย &nbsp; (I<sub>sol</sub>)'''
| '''ความเข้มของการส่องสว่างเฉลี่ย &nbsp; (I<sub>sol</sub>)'''
| 2.009{{e|7}}&nbsp;W·m<sup>–2.</sup> [[สเตอเรเดียน|sr]]<sup>–1</sup>
| 2.009{{e|7}}&nbsp;W·m<sup>–2.</sup> [[สเตอเรเดียน|sr]]<sup>–1</sup>

รุ่นแก้ไขเมื่อ 15:21, 3 ธันวาคม 2561

ดวงใจ หรือ
ดวงอาทิตย์
ข้อมูลจากการสังเกต
ระยะห่างเฉลี่ย
วัดจากโลก
1 หน่วยดาราศาสตร์ ≈ 1.496×108 กิโลเมตร
(8.19 นาทีที่ความเร็วแสง)
ความส่องสว่างปรากฏ  (V) −26.74[1]
ความส่องสว่างสัมบูรณ์ 4.83[1]
สเปกตรัม G2V[2]
ความเป็นโลหะ Z = 0.0122
ขนาดเชิงมุม 31.6–32.7 ลิปดา
คำคุณศัพท์ ทางสุริยคติ
ลักษณะเฉพาะในวงโคจร
ระยะห่างเฉลี่ย
จากแกน ดาราจักรทางช้างเผือก
≈ 2.7×1017 กิโลเมตร
(27,200 ปีแสง)
คาบการโคจรครบรอบดาราจักร (2.25–2.50)×108 ปี
อัตราเร็วในวงโคจร ≈ 220 กิโลเมตรต่อวินาที
(โคจรรอบศูนย์กลางดาราจักรทางช้างเผือก)

≈ 20 กิโลเมตรต่อวินาที
(สัมพัทธ์กับดาวดวงอื่น)

≈ 370 กิโลเมตรต่อวินาที
(เมื่อเทียบกับรังสีไมโครเวฟพื้นหลังของจักรวาล)

ลักษณะเฉพาะทางฟิสิกส์
รัศมีที่เส้นศูนย์สูตร 695,700 กิโลเมตร [2]

696,392 กิโลเมตร 109 เท่าของโลก

ความยาวเส้นศูนย์สูตร 4.379×106 กิโลเมตร [2]

109 เท่าของโลก

ความแป้น 9×10−6
พื้นที่ผิว 6.09×1012 ตารางกิโลเมตร [2]

12,000 เท่าของโลก

ปริมาตร 1.41×1018 ลูกบาศก์กิโลเมตร [2]
10 เท่าของโลก
มวล (1.988 55 ± 0.000 25)×1030 

333,000 เท่าของโลก [1]

ความหนาแน่นเฉลี่ย 1.408 กิโลกรัมต่อลูกบาศก์เซนติเมตร [2]

0.255 เท่าของโลก

ความเร่งโน้มถ่วงที่ผิวบริเวณเส้นศูนย์สูตร 274.0 เมตรต่อวินาที2 [1]

27.94 แรงโน้มถ่วง 27,542.29 เซนติเมตร-กรัม-วินาที 28 เท่าของโลก

โมเมนต์ความเฉื่อย 0.070[1] (โดยประมาณ)
ความเร็วหลุดพ้น (วัดจากพื้นผิว) 617.7 กิโลเมตรต่อวินาที [2]
55 เท่าของโลก
อุณหภูมิ แกน (รูปแบบ): 1.57×107 เคลวิน [1]

โฟโตสเฟียร์ (เป็นผล): 5,772 เคลวิน [1]
โคโรนา: ≈ 5×106 เคลวิน

ความส่องสว่าง (Lsol) 3.828×1026 วัตต์ [1]
≈ 3.75×1028 ลูเมน
≈ 98 ลูเมนต่อวัตต์
ความเข้มของการส่องสว่างเฉลี่ย   (Isol) 2.009×107 W·m–2. sr–1
อายุ ≈ 4.6 พันล้านปี
ลักษณะเฉพาะของการหมุน
ความเอียงวงโคจร 7.25°[1]
(กับระนาบสุริยวิถี)
67.23°
(กับระนาบดาราจักร)
ไรต์แอสเซนชัน
ของขั้วเหนือ
[3]
286.13°
19 ชั่วโมง 4 นาที 30 วินาที
เดคลิเนชัน
ของขั้วเหนือ
+63.87°
63° 52' เหนือ
คาบการหมุนดาราคติ
(ที่เส้นศูนย์สูตร)
25.05 วัน [1]
(ที่ละติจูด 16°) 25.38 วัน

25 วัน 9 ชั่วโมง 7 นาที 12 วินาที

(ที่ขั้ว) 34.4 วัน[1]
อัตราเร็วของการหมุน
(ที่เส้นศูนย์สูตร)
7.189×103 กิโลเมตรต่อชั่วโมง
ส่วนประกอบในโฟโตสเฟียร์โดยมวล
ไฮโดรเจน 73.46 %
ฮีเลียม 24.85 %
ออกซิเจน 0.77 %
คาร์บอน 0.29 %
เหล็ก 0.16 %
นีออน 0.12 %
ไนโตรเจน 0.09 %
ซิลิกอน 0.07 %
แมกนีเซียม 0.05 %
กำมะถัน 0.04 %
ข้อมูลอาจเปลี่ยนแปลงได้หากมีการค้นพบใหม่

ดวงอาทิตย์เป็นดาวฤกษ์ ณ ใจกลางระบบสุริยะ เป็นพลาสมาร้อนทรงเกือบกลมสมบูรณ์ โดยมีการเคลื่อนที่พาซึ่งผลิตสนามแม่เหล็กผ่านกระบวนการไดนาโม ปัจจุบันเป็นแหล่งพลังงานสำคัญที่สุดสำหรับสิ่งมีชีวิตบนโลก มีเส้นผ่านศูนย์กลางประมาณ 1.39 ล้านกิโลเมตร ใหญ่กว่าโลก 109 เท่า และมีมวลประมาณ 330,000 เท่าของโลก คิดเป็นประมาณ 99.86% ของมวลทั้งหมดของระบบสุริยะ มวลประมาณสามในสี่ของดวงอาทิตย์เป็นไฮโดรเจน ส่วนที่เหลือเป็นฮีเลียมเป็นหลัก โดยมีปริมาณธาตุหนักกว่าเล็กน้อย รวมทั้งออกซิเจน คาร์บอน นีออนและเหล็ก

ดวงอาทิตย์เป็นดาวฤกษ์ลำดับหลักระดับจี (G2V) ตามการจัดประเภทดาวฤกษ์ตามระดับสเปกตรัม โดยมักถูกเรียกอย่างไม่เป็นทางการว่า "ดาวแคระเหลือง" ดวงอาทิตย์ก่อตัวขึ้นเมื่อประมาณ 4.6 พันล้านปีก่อน จากการยุบของแรงโน้มถ่วง (gravitational collapse) ของสสารภายในบริเวณกลุ่มเมฆโมเลกุลขนาดใหญ่ สสารนี้ส่วนใหญ่รวมอัดแน่นอยู่ที่ใจกลาง ส่วนที่เหลือบีบตัวลงลงเป็นแผ่นโคจรซึ่งกลายมาเป็นระบบสุริยะ มวลใจกลางร้อนและหนาแน่นมากจนเริ่มเกิดปฏิกิริยานิวเคลียร์ฟิวชั่น ณ แก่นดาว ซึ่งเชื่อว่าเป็นกระบวนการเกิดดาวฤกษ์ส่วนใหญ่

ดวงอาทิตย์มีอายุมาได้ประมาณครึ่งอายุขัยแล้ว ไม่มีการเปลี่ยนแปลงมากนักเป็นเวลากว่า 4 พันล้านปีมาแล้ว และคาดว่าจะอยู่ในภาวะค่อนข้างเสถียรไปเช่นนี้อีก 5 พันล้านปี ในแต่ละวินาที ปฏิกิริยาหลอมนิวเคลียส (ฟิวชัน) ของดวงอาทิตย์ สามารถเปลี่ยนไฮโดรเจนอะตอมปริมาณ 600 ล้านตัน ให้กลายเป็นฮีเลียม และเปลี่ยนสสาร 4 ล้านตันให้เป็นพลังงานจากปฏิกิริยาดังกล่าว. กว่าพลังงานนี้จะหนีออกจากแกนดวงอาทิตย์มาสู่พื้นผิวได้ ต้องใช้เวลานานราว 10,000 ภึง 170,000 ปี. ในอีกราว 5 พันล้านปีข้างหน้า เมื่อปฏิกิริยาฟิวชันไฮโดรเจนในแก่นของดวงอาทิตย์ลดลงถึงจุดที่ไม่อยู่ในดุลยภาพอุทกสถิตต่อไป แก่นของดวงอาทิตย์จะมีความหนาแน่นและอุณหภูมิเพิ่มขึ้นส่วนชั้นนอกของดวงอาทิตย์จะขยายออกจนสุดท้ายเป็นดาวยักษ์แดง มีการคำนวณว่าดวงอาทิตย์จะใหญ่พอกลืนวงโคจรปัจจุบันของดาวพุธและดาวศุกร์ และทำให้โลกอาศัยอยู่ไม่ได้

มนุษย์ทราบความสำคัญของดวงอาทิตย์ที่มีโลกมาตั้งแต่สมัยก่อนประวัติศาสตร์ และบางวัฒนธรรมถือดวงอาทิตย์เป็นเทวดา การหมุนของโลกและวงโคจรรอบดวงอาทิตย์ของโลกเป็นรากฐานของปฏิทินสุริยคติ ซึ่งเป็นปฏิทินที่ใช้กันแพร่หลายในปัจจุบัน

ภาพรวมเกี่ยวกับดวงอาทิตย์

ดวงอาทิตย์จัดเป็นดาวฤกษ์รุ่นที่ 3 ซึ่งสันนิษฐานกันว่า ก่อตัวขึ้นโดยอิทธิพลของมหานวดาราที่อยู่ใกล้ ๆ [4] เพราะมีการค้นพบธาตุหนัก เช่น ทองคำและยูเรเนียมในปริมาณมาก ซึ่งธาตุเหล่านี้อาจเกิดจากปฏิกิริยานิวเคลียร์ชนิดดูดความร้อนขณะที่เกิดมหานวดารา หรือการดูดซับนิวตรอนในดาวฤกษ์รุ่นที่สองซึ่งมีมวลมาก

ปัจจุบันและอนาคตของดวงอาทิตย์

ตามการศึกษาแบบจำลองคอมพิวเตอร์ว่าด้วยวัฏจักรดาวฤกษ์ นักดาราศาสตร์สันนิษฐานว่าดวงอาทิตย์มีอายุประมาณ 5,000 ล้านปี[5] ในขณะนี้ดวงอาทิตย์กำลังอยู่ในลำดับหลัก ทำการหลอมไฮโดรเจนให้เป็นฮีเลียม โดยทุก ๆ วินาที มวลสารของดวงอาทิตย์มากกว่า 4 ล้านตันถูกเปลี่ยนเป็นพลังงาน ดวงอาทิตย์ใช้เวลาโดยประมาณ 1 หมื่นล้านปีในการดำรงอยู่ในลำดับหลัก

เมื่อไฮโดรเจนซึ่งเป็นเชื้อเพลิงของดวงอาทิตย์หมดลง วาระสุดท้ายของดวงอาทิตย์ก็มาถึง (คือการพ้นไปจากลำดับหลัก) โดยดวงอาทิตย์จะเริ่มพบกับจุดจบคือการแปรเปลี่ยนไปเป็นดาวยักษ์แดงภายใน 4-5 พันล้านปี ผิวนอกของดวงอาทิตย์ขยายตัวออกไป ส่วนแกนนั้นยุบตัวลงและร้อนขึ้นสลับกับเย็นลง มีการหลอมฮีเลียมเป็นคาร์บอนและออกซิเจนที่อุณหภูมิราว 100 ล้านเคลวิน จากสถานการณ์ข้างต้นดูเหมือนว่าดวงอาทิตย์จะกลืนกินโลกให้หลอมลงไปเป็นเนื้อเดียวกัน แต่จากรายงานวิจัยฉบับหนึ่ง[6]ได้ศึกษาพบว่าวงโคจรของโลกจะตีตัวออกห่างดวงอาทิตย์เพราะมวลของดวงอาทิตย์ได้สูญเสียไป จนแรงดึงดูดระหว่างมวลมีค่าลดลง แต่ถึงกระนั้น น้ำทะเลก็ถูกความร้อนจากดวงอาทิตย์เผาผลาญจนระเหยสิ้นไปในอวกาศ และบรรยากาศโลกก็อันตรธานไปจนไม่เอื้อแก่ชีวิตต่อมาได้มีการค้นพบ ว่าดวงอาทิตย์นั้นจะสว่างขึ้น 10 เปอร์เซนต์ ทุก ๆ 1000 ล้านปี ถึงตอนนั้นโลกก็ไม่อาจจะเอื้อ ต่อสิ่งมีชีวิตไปก่อนแล้ว เวลาของสิ่งมีชีวิตบนโลก จึงเหลือแค่ 500 ล้านปีเท่านั้น

แผนภาพชีวิตดวงอาทิตย์

หลังจากที่ดวงอาทิตย์ได้ผ่านสภาพการเป็นดาวยักษ์แดงแล้ว อุณหภูมิจากปฏิกิริยาการหลอมฮีเลียมที่เพิ่มสลับกับลงภายในแกน ก็จะเป็นตัวการให้ผิวดวงอาทิตย์ด้านนอกผละตัวออกจากแกน เกิดเป็นเนบิวลาดาวเคราะห์ แล้วอันตรธานไปในความมืดมิดของอวกาศ และเป็นวัสดุสำหรับสร้างดาวฤกษ์และระบบสุริยะรุ่นถัดไป ส่วนแกนที่เหลืออยู่ก็จะกลายเป็นดาวแคระขาวที่ร้อนจัดและมีแสงจางมาก ก่อนจะดับลงกลายเป็นดาวแคระดำ จากทั้งหมดที่กล่าวมานี้คือชีวิตของดาวฤกษ์ที่มีมวลน้อยถึงปานกลาง[6][7]

โครงสร้าง

ดวงอาทิตย์เป็นวัตถุที่ใหญ่ที่สุดในระบบสุริยะ มีมวลคิดเป็นร้อยละ 99 ของระบบสุริยะ ดวงอาทิตย์เป็นดาวฤกษ์ที่มีรูปทรงเกือบเป็นทรงกลม โดยมีความแบนที่ขั้วเพียงหนึ่งในเก้าล้าน[8] ซึ่งหมายความว่าความแตกต่างของเส้นผ่านศูนย์กลางที่ขั้วกับเส้นผ่านศูนย์กลางที่เส้นศูนย์สูตรมีเพียง 10 กิโลเมตร จากการที่ดวงอาทิตย์มีเฉพาะส่วนที่เป็นพลาสมา ไม่มีส่วนที่เป็นของแข็ง ทำให้อัตราเร็วของการหมุนรอบตัวเองในแต่ละส่วนมีความต่างกัน เช่นที่เส้นศูนย์สูตรจะหมุนเร็วกว่าที่ขั้ว ที่เส้นศูนย์สูตรของดวงอาทิตย์มีคาบการหมุนรอบตัวเอง 25 วัน ส่วนที่ขั้วมีคาบ 35 วัน แต่เมื่อสังเกตบนโลกแล้วจะพบว่าคาบของการหมุนรอบตัวเองที่เส้นศูนย์สูตรของดวงอาทิตย์คือ 28 วัน

ดวงอาทิตย์มีความหนาแน่นมากที่สุดบริเวณแกน ซึ่งเป็นแหล่งผลิตพลังงาน และมีค่าน้อยลงเกือบเป็นรูปเอ็กโพเนนเชียลตามระยะทางที่ห่างออกมาจากแกน และแม้ว่าภายในดวงอาทิตย์นั้นจะไม่สามารถมองเห็นได้ แต่นักวิทยาศาสตร์ก็สามารถศึกษาภายในได้ผ่านทางการใช้คลื่นสะเทือนในดวงอาทิตย์

แกน

ส่วนแกนของดวงอาทิตย์สันนิษฐานว่ามีรัศมีเป็น 0.2 เท่าของรัศมีดวงอาทิตย์ ความหนาแน่นประมาณ 150,000 กิโลกรัมต่อลูกบาศก์เมตร หรือ 150 เท่าของความหนาแน่นของน้ำบนโลก อุณหภูมิประมาณ 13,600,000 เคลวิน ตลอดชีวิตส่วนใหญ่ของดวงอาทิตย์ ภายในแกนจะมีปฏิกิริยาฟิวชันลูกโซ่ โปรตอน-โปรตอน ซึ่งเปลี่ยนไฮโดรเจนเป็นฮีเลียม พลังงานที่ได้นี้ทำให้ส่วนที่เหลือของดวงอาทิตย์สุกสว่างและเปล่งแสง

ทุก ๆ วินาที จะมีนิวเคลียสของไฮโดรเจน 3.4×1038 ตัว ถูกแปรรูปเป็นฮีเลียม ผลิตพลังงานได้ 383×1024 จูล หรือเทียบได้กับระเบิดไตรไนโตรโทลูอีน (TNT) ถึง 9.15×1019 กิโลกรัม พลังงานจากแกนของดวงอาทิตย์ใช้เวลานานมากในการขึ้นสู่พื้นผิว อย่างมากเป็น 50 ล้านปี[9] อย่างน้อยเป็น 17,000 ปี[10]เพราะโฟตอนพลังงานสูง (รังสีเอกซ์และรังสีแกมมา) ถูกดูดกลืนไปในพลาสมา แล้วเปล่งพลังงานออกมาสลับกันเรื่อย ๆ ทุก ๆ ระยะไม่กี่มิลลิเมตร

เขตแผ่รังสีความร้อน

ภาพประกอบโครงสร้างของดวงอาทิตย์

ในส่วนของเขตแผ่รังสีความร้อน (radiation zone) ซึ่งอยู่ในช่วง 0.2 ถึง 0.7 ส่วนของรัศมีดวงอาทิตย์ ในชั้นนี้ไม่มีการพาความร้อน (convection) เพราะอัตราความแตกต่างของอุณหภูมิเทียบกับระยะความสูงน้อยกว่าอัตราการเปลี่ยนอุณหภูมิตามความสูงแบบอะเดียแบติก (adiabatic lapse rate) พลังงานในส่วนนี้ถูกนำออกมาภายนอกช้ามากดังที่ได้กล่าวไว้ก่อนแล้ว

เขตพาความร้อน

ในส่วนของเขตพาความร้อน (convection zone) ซึ่งอยู่บริเวณผิวนอกที่เหลือ เป็นส่วนที่พลังงานถูกถ่ายเทผ่านแท่งความร้อน (heat column) โดยเนื้อสารที่ร้อนและมีพลังงานเริ่มต้นจากด้านล่าง แล้วไหลขึ้นด้านบนจนถึงผิว จากนั้นถ่ายเทความร้อนและกลับลงไปใหม่ แท่งความร้อนสามารถสังเกตได้จาก “เกล็ด” บนภาพถ่ายผิวดวงอาทิตย์

โฟโตสเฟียร์

ในส่วนของโฟโตสเฟียร์ (photosphere) แปลว่า ทรงกลมแห่งแสง ซึ่งเป็นส่วนที่เรามองเห็นดวงอาทิตย์ แสงสว่างที่เปล่งในดวงอาทิตย์นั้นเกิดจากอิเล็กตรอนชนกับอะตอมไฮโดรเจนเกิดเป็น H-[11][12] เหนือชั้นนี้ แสงอาทิตย์ก็จะถูกปลดปล่อยออกมา และมีอุณหภูมิต่ำลงตามความสูงที่มากขึ้น จนทำให้สังเกตเห็นรอยมัวตรงขอบดวงอาทิตย์ในภาพถ่าย (ดังภาพถ่ายด้านบน)

บรรยากาศ

บรรยากาศของดวงอาทิตย์ประกอบด้วย 3 ชั้น ได้แก่ ชั้นอุณหภูมิต่ำสุด (temperature minimum) โครโมสเฟียร์ (chromosphere) เขตเปลี่ยนผ่าน (transition region) โคโรนา (corona) และเฮลิโอสเฟียร์ (heliosphere) ตามลำดับจากต่ำไปสูง

ชั้นแรก ชั้นอุณหภูมิต่ำสุด มีอุณหภูมิประมาณ 4,000 เคลวิน และหนา 500 กิโลเมตร ชั้นถัดไปคือโครโมสเฟียร์ ซึ่งแปลว่ารงคมณฑล หรือทรงกลมแห่งสี เหตุที่เรียกชื่อนี้ก็เพราะเห็นเป็นแสงสีแวบขณะเกิดสุริยุปราคา ชั้นนี้หนา 2,000 กิโลเมตร ชั้นต่อไปเป็นเขตเปลี่ยนผ่านซึ่งอุณหภูมิอาจติดลบถึงล้านเคลวิน และยิ่งต่ำขึ้นไปอีกในชั้นโคโรนา ทำให้สิ่งนี้เป็นปัญหาคาใจนักวิทยาศาสตร์ ซึ่งก็สันนิษฐานว่าอาจเกิดจากการต่อเชื่อมทางแม่เหล็ก (magnetic connection) ชั้นที่เหลือชั้นสุดท้ายคือ เฮลิโอสเฟียร์ หรือสุริยมณฑล คือชั้นที่อำนาจของลมสุริยะสามารถไปถึง ซึ่งอาจมากกว่า 20 หน่วยดาราศาสตร์ (20 เท่าของระยะทางจากโลกถึงดวงอาทิตย์)

อำนาจแม่เหล็ก และกิจกรรมบนพื้นผิว

ช่วงชีวิตของดวงอาทิตย์

ประวัติศาสตร์เกี่ยวกับการสังเกตดวงอาทิตย์

ความเข้าใจในอดีต

มนุษย์ในอดีตรู้เกี่ยวกับดวงอาทิตย์เพียงเป็นลูกไฟกลม ขึ้นจากท้องฟ้าในทิศตะวันออกทำให้เกิดกลางวัน และตกลงไปทางทิศตะวันตกทำให้เกิดกลางคืน ดวงอาทิตย์ให้ทั้งความสว่าง ความร้อน ความอบอุ่น ตลอดจนความหวังในจิตใจ จนมีการนับถือดวงอาทิตย์ให้เป็นเทพเจ้า มีการบูชายัญถวายเทพพระอาทิตย์ของชาวอัซเตก (Aztec) ซึ่งปัจจุบันอยู่ในประเทศเม็กซิโก นอกเหนือจากนี้ มนุษย์ในสมัยโบราณยังได้สร้างสิ่งประดิษฐ์สำหรับบอกตำแหน่งของดวงอาทิตย์ในวันอุตรายัน (Summer solstice) ซึ่งเป็นวันที่กลางวันยาวที่สุดในรอบปี คือประมาณวันที่ 24 มิถุนายน เช่นที่เสาหินสโตนเฮนจ์ ในประเทศอังกฤษ และพีระมิดเอลกัสตีโย (El Castillo) ประเทศเม็กซิโก

ดวงอาทิตย์ตกยามเย็นคล้ายระเบิดนิวเคลียร์ในหนังฮอลลีวู๊ด

การพัฒนาแนวความคิดสมัยใหม่

ต่อมานักปราชญ์ชาวกรีกชื่อ อะนักซากอรัส (Anaxagoras) ได้เสนอว่า ดวงอาทิตย์เป็นลูกไฟกลม ไม่ได้เป็นพระอาทิตย์ทรงพาหนะ ทำให้เขาต้องโทษประหารชีวิตในเวลาต่อมา ต่อมามีการสันนิษฐานว่าเอราโตสเทเนส ได้วัดระยะห่างจากโลกไปดวงอาทิตย์ได้เที่ยงตรงเป็นคนแรกในช่วงศตวรรษที่ 3 ก่อนคริสตกาล ซึ่งวัดได้ 149 ล้านกิโลเมตร ใกล้เคียงกับที่ยอมรับในปัจจุบัน

ในเวลาต่อมา ชาวกรีกโบราณและชาวอินเดียโบราณตั้งสมมติฐาน โลกโคจรรอบดวงอาทิตย์ และต่อมาก็ได้รับการพิสูจน์โดยนิโคเลาส์ โคเปอร์นิคัสในช่วงศตวรรษที่ 16 ต่อมาทอมัส แฮร์ริออต (Thomas Harriot) กาลิเลโอ กาลิเลอิ และนักดาราศาสตร์คนอื่น ๆ สังเกตพบจุดดำบนดวงอาทิตย์ โดยกาลิเลโอเสนอว่าจุดดำบนดวงอาทิตย์คือจุดที่เกิดบนผิวดวงอาทิตย์โดยตรง มิได้เป็นวัตถุเคลื่อนที่มาบัง[13] ในปี พ.ศ. 2215 โจวันนี คาสซินี (Giovanni Cassini) นักดาราศาสตร์ชาวอิตาลี และชอง รีเช (Jean Richer) นักดาราศาสตร์ชาวฝรั่งเศส ได้หาระยะทางจากโลกไปดาวอังคาร และอาจจะสามารถหาระยะทางไปดวงอาทิตย์ได้หลังจากนั้น ไอแซก นิวตัน ได้สังเกตดวงอาทิตย์โดยให้แสงดวงอาทิตย์ผ่านปริซึม เขาพบว่าประกอบขึ้นด้วยหลาย ๆ แสงสี นั่นคือสิ่งที่เกิดขึ้นในรุ้งกินน้ำ[14]ต่อมาวิลเลียม เฮอร์เชล ได้ค้นพบการแผ่รังสีอินฟราเรดในช่วงใต้แดงจากดวงอาทิตย์ [15]เมื่อเทคโนโลยีสเปกตรัมก้าวหน้า โยเซฟ ฟอน เฟราน์โฮเฟอร์ (Joseph von Fraunhofer) ได้ค้นพบเส้นดูดกลืนในสเปกตรัมของดวงอาทิตย์ ซึ่งต่อมาเรียกว่าเส้นเฟราน์โฮเฟอร์ (Fraunhofer line)

ช่วงแรก ๆ ของยุคใหม่ทางวิทยาศาสตร์ ปัญหาที่คาใจนักวิทยาศาสตร์ก็คือดวงอาทิตย์เอาพลังงานมาจากที่ใด ลอร์ดเคลวิน (วิลเลียม ทอมสัน) และแฮร์มันน์ ฟอน เฮล์มโฮลตซ์ (Hermann von Helmholtz) ได้เสนอกลไกเคลวิน-เฮล์มโฮลตซ์ (Kelvin-Helmholtz mechanism) ในการอธิบายการพาความร้อนขึ้นสู่ผิวดวงอาทิตย์ ต่อมาในปี พ.ศ. 2447 เออร์เนสต์ รัทเทอร์ฟอร์ด เสนอว่าพลังงานในดวงอาทิตย์มาจากปฏิกิริยาการคายพลังงานจากอนุภาคที่ถูกกระตุ้น[16] แต่ก็คงอธิบายไม่ละเอียดเท่าของอัลเบิร์ต ไอน์สไตน์ ซึ่งเป็นเจ้าของสมการสมมูลมวล-พลังงาน E=mc2

ในปี พ.ศ. 2463 อาร์เทอร์ เอดดิงตัน เสนอว่าความร้อนและความดันภายในแกนเป็นตัวการที่ทำให้เกิดปฏิกิริยาฟิวชัน และก่อให้เกิดการเปลี่ยนแปลงมวลและพลังงาน[17] สิบปีต่อมาทฤษฎีนี้เริ่มเป็นรูปเป็นร่าง โดยสุพราห์มันยัน จันทรเสกขา (Subrahmanyan Chandrasekar) นักดาราศาสตร์ชาวอเมริกันเชื้อสายอินเดีย และฮันส์ เบเทอ นักดาราศาสตร์ชาวอเมริกันเชื้อสายเยอรมัน [18][19]

โครงการสำรวจดวงอาทิตย์

ไฟล์:I screenimage 30579.jpg
ภาพถ่ายพวยเพลิงสุริยะโดยเครื่องมือ 4 ชิ้นบนยานโซโฮ

องค์การนาซาได้เคยปล่อยยานสำรวจดวงอาทิตย์ในโครงการไพโอเนียร์ ซึ่งปล่อยช่วงปี พ.ศ. 2502 ถึง พ.ศ. 2511[20] โดยทำการตรวจวัดสนามแม่เหล็กของดวงอาทิตย์และลมสุริยะ ต่อมาก็ได้ส่งยานสกายแล็บเมื่อปี พ.ศ. 2516 ทำการศึกษาโคโรนาของดวงอาทิตย์ และการพ่นมวลของโคโรนา ในปี พ.ศ. 2534 ญี่ปุ่นได้ส่งยานโยะโกะ (阳光) เพื่อศึกษาเพลิงสุริยะในช่วงรังสีเอกซ์ นอกจากนี้ยังแสดงให้เห็นว่า โคโรนาจะยุบลงในช่วงที่มีกิจกรรมบนผิวดวงอาทิตย์มาก ยานโยะโกะถูกปลดระวางเมื่อ พ.ศ. 2548 [21]

ภารกิจสำรวจดวงอาทิตย์ที่เรารู้จักกันมักหนีไม่พ้นหอสังเกตการณ์ดวงอาทิตย์และสุริยมณฑล หรือโซโฮ (Solar and Heliospheric Observatory; SOHO) อันเป็นความร่วมมือระหว่างสหรัฐอเมริกา และสหภาพยุโรป ถูกปล่อยเมื่อวันที่ 2 ธันวาคม พ.ศ. 2538 เดิมทีกำหนดให้ปฏิบัติงานสองปี แต่กลับปฏิบัติงานมากกว่า 10 ปี ยานโซโฮเป็นยานสังเกตการณ์ที่ทำให้เรารู้หลายอย่างเกี่ยวกับดวงอาทิตย์มากขึ้นในหลาย ๆ ช่วงคลื่นแม่เหล็กไฟฟ้า และยังสังเกตเห็นดาวหางที่พุ่งชนดวงอาทิตย์ด้วย ส่วนอีกโครงการหนึ่งที่มีแผนจะปล่อยขึ้นสู่ห้วงอวกาศในเดือนสิงหาคม ปี พ.ศ. 2551[22] คือโครงการหอสังเกตการณ์สุริยพลวัต (Solar Dynamic Observatory) ซึ่งจะนำไปไว้ยังจุดลากรองจ์ (Lagrangian point) หรือจุดสะเทินแรงดึงดูด ระหว่างโลกกับดวงอาทิตย์

นอกเหนือจากนี้ ยังมีโครงการสังเกตระบบสุริยะจากมุมอื่น โดยมีการส่งยานยุลลิซิส (Ulysses) เมื่อ พ.ศ. 2533 โดยให้ไปยังดาวพฤหัสบดีเพื่อเหวี่ยงตัวขึ้นเหนือระนาบระบบสุริยะ ครานั้นยานสามารถสังเกตเห็นดาวหางชูเมกเกอร์-เลวี 9 ชนดาวพฤหัสบดีในปี พ.ศ. 2537 เมื่อยานยุลลิซิสถึงที่หมาย ก็จะทำการสำรวจลมสุริยะและสนามแม่เหล็กที่ละติจูดสูง ๆ และพบว่าอัตราเร็วลมสุริยะอยู่ที่ 750 กิโลเมตรต่อวินาที ซึ่งช้ากว่าที่ได้คาดไว้ และยังมีสนามแม่เหล็กที่ทำให้รังสีคอสมิกกระเจิงด้วย[23]

บทบาทของดวงอาทิตย์ต่อสิ่งมีชีวิต

นับตั้งแต่ปฏิกิริยานิวเคลียร์ความร้อน (thermonuclear reaction) ในใจกลางดวงอาทิตย์ แผ่พลังงานออกมาในรูปของคลื่นแม่เหล็กไฟฟ้าและพลังงานที่สะสมภายในอนุภาค ใช้เวลาเดินทางนับหมื่นนับแสนปีจนกระทั่งถึงผิวดวงอาทิตย์ และต่อด้วยการเดินทาง 8 นาทีมายังโลกของเรา ในรูปของแสงที่มองเห็น รังสีแกมมา รังสีเอกซ์ และรังสีอื่น ๆ ต้องขอบคุณชั้นบรรยากาศโลกที่ได้กรองเอาสิ่งที่เป็นอันตรายเหล่านี้ออกไป ไม่นานนักพลังงานก็ถึงยังพื้นโลก ทั้งให้ความอบอุ่นน่าอยู่ในเขตหนาว หรือแม้แต่ให้ความรู้สึกรำคาญในเขตร้อน ทว่าพลังงานจากดวงอาทิตย์ก็ได้ถูกดูดซับเข้าไปในพืชและโพรทิสต์ จากนั้นพืชก็สามารถตรึงเอาคาร์บอนไดออกไซด์ออกจากอากาศได้เป็นน้ำตาล ผ่านกระบวนการสังเคราะห์ด้วยแสง น้ำตาลที่ได้นั้นพืชก็จะนำไปแปรรูปเป็นทั้งผนังเซลล์ เยื่อหุ้มเซลล์ ออแกเนลล์ภายในเซลล์ ฯลฯ นอกเหนือจากธาตุอาหารที่ดูดขึ้นมาจากดิน

เมื่อพืชเป็นผู้ผลิต (ที่แท้จริงคือผู้แปรรูป) อาหารจากพลังงานแสงอาทิตย์ ก็ทำให้สัตว์มีอาหารจากส่วนต่าง ๆ ของพืช ในการสลายอาหารของสัตว์ สิ่งสำคัญที่สุดนอกจากอาหารที่ได้รับแล้วก็คือออกซิเจน ซึ่งเป็นของเสียในกระบวนการสังเคราะห์ด้วยแสง เพื่อไปรับอิเล็กตรอนตัวสุดท้ายในกระบวนการสลายสารอาหารระดับเซลล์ ขณะเดียวกันสัตว์ก็หายใจเอาแก๊สคาร์บอนไดออกไซด์ซึ่งเป็นสารพลังงานต่ำออกมา เพื่อที่พืชจะได้ตรึงอีกครั้งเป็นวัฏจักร

อ้างอิง

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 NASA "Sun Fact Sheet"
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Sun:Facts & figures NASA Solar System Exploration page
  3. Seidelmann, P. K. (2000). "Report Of The IAU/IAG Working Group On Cartographic Coordinates And Rotational Elements Of The Planets And Satellites: 2000". สืบค้นเมื่อ 2006-03-22. {{cite web}}: ไม่รู้จักพารามิเตอร์ |coauthors= ถูกละเว้น แนะนำ (|author=) (help)
  4. Falk, S. W. (1977). "Are supernovae sources of presolar grains?". Nature. 270: 700–701. {{cite journal}}: ไม่รู้จักพารามิเตอร์ |coauthors= ถูกละเว้น แนะนำ (|author=) (help)
  5. Bonanno, A. (2002). "The age of the Sun and the relativistic corrections in the EOS" (PDF). Astronomy and Astrophysics. 390: 1115–1118. {{cite journal}}: ไม่รู้จักพารามิเตอร์ |coauthors= ถูกละเว้น แนะนำ (|author=) (help)
  6. 6.0 6.1 Pogge, Richard W. (1997). "The Once and Future Sun" (lecture notes). New Vistas in Astronomy. The Ohio State University (Department of Astronomy). สืบค้นเมื่อ 2005-12-07. {{cite web}}: แหล่งข้อมูลอื่นใน |work= (help)
  7. Sackmann, I.-Juliana (1993). "Our Sun. III. Present and Future". Astrophysical Journal. 418: 457. {{cite journal}}: ไม่รู้จักพารามิเตอร์ |coauthors= ถูกละเว้น แนะนำ (|author=) (help); ไม่รู้จักพารามิเตอร์ |month= ถูกละเว้น (help)
  8. Godier, S. (2000). "The solar oblateness and its relationship with the structure of the tachocline and of the Sun's subsurface" (PDF). Astronomy and Astrophysics. 355: 365–374. {{cite journal}}: ไม่รู้จักพารามิเตอร์ |coauthors= ถูกละเว้น แนะนำ (|author=) (help)
  9. Lewis, Richard (1983). The Illustrated Encyclopedia of the Universe. Harmony Books, New York. p. 65.
  10. Plait, Phil (1997). "Bitesize Tour of the Solar System: The Long Climb from the Sun's Core". Bad Astronomy. สืบค้นเมื่อ 2006-03-22.
  11. Gibson, Edward G. (1973). The Quiet Sun. NASA.
  12. Shu, Frank H. (1991). The Physics of Astrophysics. University Science Books.
  13. "Galileo Galilei (1564–1642)". BBC. สืบค้นเมื่อ 2006-03-22.
  14. "Sir Isaac Newton (1643–1727)". BBC. สืบค้นเมื่อ 2006-03-22.
  15. "Herschel Discovers Infrared Light". Cool Cosmos. สืบค้นเมื่อ 2006-03-22.
  16. Darden, Lindley (1998). "The Nature of Scientific Inquiry". Macmillan's Magazine.
  17. "Studying the stars, testing relativity: Sir Arthur Eddington". ESA Space Science. 2005-06-15.
  18. Bethe, H. (1938). "On the Formation of Deuterons by Proton Combination". Physical Review. 54: 862–862.
  19. Bethe, H. (1939). "Energy Production in Stars". Physical Review. 55: 434–456.
  20. "Pioneer 6-7-8-9-E". Encyclopedia Astronautica. สืบค้นเมื่อ 2006-03-22.
  21. Japan Aerospace Exploration Agency (2005). "Result of Re-entry of the Solar X-ray Observatory "Yohkoh" (SOLAR-A) to the Earth's Atmosphere". สืบค้นเมื่อ 2006-03-22.
  22. "Solar Dynamic Observatory Mission Schedule". NASA. สืบค้นเมื่อ 2007-7-30. {{cite web}}: line feed character ใน |title= ที่ตำแหน่ง 26 (help); ตรวจสอบค่าวันที่ใน: |accessdate= (help)
  23. "Ulysses - Science - Primary Mission Results". NASA. สืบค้นเมื่อ 2006-03-22.

แหล่งข้อมูลอื่น

2 = พระอาทิตย์