ความโน้มถ่วง

จากวิกิพีเดีย สารานุกรมเสรี
(เปลี่ยนทางจาก แรงโน้มถ่วง)
ไปยังการนำทาง ไปยังการค้นหา

สวัสดี

ประวัติศาสตร์[แก้]

กฎความโน้มถ่วงของนิวตัน[แก้]

ความโน้มถ่วงระหว่างวัตถุสองอัน

ในปี พ.ศ. 2230 ไอแซก นิวตัน ได้ค้นพบกฎความโน้มถ่วงดังนี้

F แทนความโน้มถ่วงระหว่างมวลทั้งสอง
G แทนค่านิจโน้มถ่วงสากล
m1 แทนมวลของวัตถุแรก
m2 แทนมวลของวัตถุที่สอง
r แทนระยะห่างระหว่างวัตถุทั้งสอง

ทฤษฎีสัมพัทธภาพทั่วไป[แก้]

Albert Einstein ได้เผยแพร่ทฤษฎีสัมพัทธภาพทั่วไปในปี พ.ศ. 2459 โดยเนื้อหาแสดงถึงการอธิบายความโน้มถ่วงที่มีพื้นฐานมาจากทฤษฎีสัมพัทธภาพพิเศษและกฎความโน้มถ่วงของนิวตันในรูปแบบของกาลอวกาศ (อังกฤษ: Spacetime) เชิงเรขาคณิตที่สามารถอธิบายได้ด้วยสมการสนามของAlbert Einstein (อังกฤษ: Einstein field Equation) ดังนี้

แทน ริชชี่เทนเซอร์ความโค้ง (Ricci Tensor Curvature)
แทนความโค้งเชิงสเกลาร์ (Scalar Curvature)
แทนเมตริกซ์เทนเซอร์
แทนค่าคงตัวจักรวาล (Cosmological Constant)
แทนค่านิจโน้มถ่วงสากล (Gravity Constant)
แทนความเร็วแสง
แทนเทนเซอร์ความเค้น-พลังงาน (Stress-Energy Tensor)

หัวข้อเฉพาะ[แก้]

แรงโน้มถ่วงของโลก[แก้]

จากกฎความโน้มถ่วงของนิวตัน ความโน้มถ่วงของโลกที่กระทำกับมวลใด ๆ จะขึ้นอยู่กับระยะทางระหว่างศูนย์กลางมวลของโลกกับศูนย์กลางมวลวัตถุยกกำลังสอง ดังนั้นแรงโน้มถ่วงของโลกบริเวณต่าง ๆ จึงมีค่าไม่เท่ากัน และเนื่องจากโลกมีการหมุนรอบตัวเองมีผลทำให้เกิดแรงหนีศูนย์กลาง แรงหนีศูนย์กลางนี้จะหักล้างกับแรงโน้มถ่วงของโลก แรงหนีศูนย์กลางจะมีค่ามากที่สุดบริเวณเส้นศูนย์สูตร และมีค่าน้อยที่สุดบริเวณขั้วโลก ผลของแรงหนีศูนย์กลางนี้ทำให้แรงโน้มถ่วงของโลกบริเวณเส้นศูนย์สูตรมีค่าน้อยกว่าแรงโน้มถ่วงของโลกบริเวณขั้วโลกเหนือ นอกจากนั้น โลกก็มิได้เป็นทรงกลมโดยสมบูรณ์ แต่แป้นตรงกลางเล็กน้อยคล้ายผลส้ม ทำให้ระยะห่างจากจุดศูนย์กลางของโลกถึงพื้นผิวโลกแปรผันไปตามละติจูด

สำหรับการคำนวณทางวิศวกรรมโดยทั่วไปความเปลี่ยนแปลงของค่าแรงโน้มถ่วงไม่ถือเป็นนัยสำคัญ จึงสามารถใช้ค่าเฉลี่ยของแรงโน้มถ่วงของโลกได้ โดยกำหนดให้ ความเร่งเนื่องจากความโน้มถ่วงของโลก (g) มีค่าเท่ากับประมาณ 9.81(~10) เมตรต่อวินาทีกำลังสอง