เทสโทสเตอโรน

จากวิกิพีเดีย สารานุกรมเสรี
ไปยังการนำทาง ไปยังการค้นหา
บทความนี้กล่าวถึงฮอร์โมนธรรมชาติ สำหรับเทสโทสเตอโรนที่ใช้เป็นยา ดูที่ เทสโทสเตอโรน (ยา)
แม่แบบ:Chembox ProteinBound
เทสโทสเตอโรน
Testosteron.svg
Testosterone-from-xtal-3D-balls.png
ชื่อตาม IUPAC (8R,9S,10R,13S,14S,17S)-17-hydroxy-10,13-dimethyl-1,2,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-one
ชื่ออื่น Androst-4-en-17β-ol-3-one
เลขทะเบียน
เลขทะเบียน CAS [58-22-0][CAS]
PubChem 6013
DrugBank DB00624
KEGG D00075
ChEBI 17347
SMILES
ChemSpider ID 5791
คุณสมบัติ
สูตรโมเลกุล C19H28O2
มวลโมเลกุล 288.42 g mol−1
จุดหลอมเหลว

155

Pharmacology
ATC code G03BA03
ชีวปริมาณออกฤทธิ์ ทางปาก - ต่ำมาก (เนื่องจากต้องผ่านการย่อยอาหาร)
Routes of
administration
ผ่านผิวหนัง (เจล, ครีม, ยาทา, แผ่นแปะผิวหนัง), ทางปาก (testosterone undecanoate), กระพุ้งแก้มในปาก, สูดทางจมูก, ฉีดในกล้ามเนื้อ (Testosterone esters), ฝังใต้ผิวหนัง
Metabolism ตับ (โดย reduction และ conjugation)
Elimination
half-life
2-4 ชม.[ต้องการอ้างอิง]
Elimination
half-life
ปัสสาวะ (90%), อุจจาระ (6%)
หากมิได้ระบุเป็นอื่น ข้อมูลข้างต้นนี้คือข้อมูลสาร ณ ภาวะมาตรฐานที่ 25 °C, 100 kPa
สถานีย่อย:เคมี

เทสโทสเตอโรน (อังกฤษ: Testosterone) เป็นฮอร์โมนหลักในกลุ่มฮอร์โมนเพศชายและสเตอรอยด์การสร้าง (anabolic steroid) ประเภทหนึ่งที่พบในสัตว์มีกระดูกสันหลังโดยมาก มีบทบาทสำคัญในพัฒนาการของเนื้อเยื่อในระบบสืบพันธุ์ชาย เช่น อัณฑะและต่อมลูกหมาก ตลอดจนส่งเสริมลักษณะเฉพาะทางเพศทุติยภูมิ เช่น การเจริญเติบโตของกล้ามเนื้อกับกระดูก และการเกิดขนตัว[2] นอกจากนั้นแล้ว ฮอร์โมนยังเป็นสิ่งที่ขาดไม่ได้ต่อสุขภาพและความอยู่เป็นสุข[3] ตลอดจนป้องกันโรคกระดูกพรุน[4] ระดับฮอร์โมนที่ไม่พอในชาย อาจทำให้เกิดความผิดปกติต่าง ๆ เช่น ความอ่อนแอและการเสียกระดูก ฮอร์โมนอาจใช้เพื่อรักษาอวัยวะเพศชายทำงานไม่พอ (male hypogonadism) และมะเร็งเต้านมบางชนิด[5] เนื่องจากระดับฮอร์โมนจะลดลงเรื่อย ๆ ตามอายุ แพทย์บางครั้งจะให้ฮอร์โมนสังเคราะห์กับชายสูงอายุเพื่อแก้ปัญหาการขาด เทสโทสเตอโรนเป็นสเตอรอยด์ในกลุ่ม androstane ที่มีกลุ่มคีโทนและไฮดรอกซิลที่ตำแหน่ง 3 และ 17 ตามลำดับ ซึ่งสามารถสังเคราะห์จากคอเลสเตอรอลในหลายขั้นตอน และตับจะเปลี่ยนมันเป็นเมแทบอไลต์ที่ไม่มีฤทธิ์[6] ฮอร์โมนสามารถเข้ายึดและออกฤทธิ์ต่อตัวรับแอนโดรเจน (androgen receptor) ในนิวเคลียสของเซลล์[6]

ในมนุษย์และสัตว์มีกระดูกสันหลังโดยมาก อัณฑะเป็นอวัยวะที่หลั่งฮอร์โมนในชาย และรังไข่ในหญิงแม้ในระดับที่ต่ำกว่า ต่อมหมวกไตก็หลั่งฮอร์โมนแม้เล็กน้อยด้วย โดยเฉลี่ย ในชายผู้ใหญ่ ระดับเทสโทสเตอโรนจะอยู่ที่ 7-8 เท่าของหญิงผู้ใหญ่[7] เพราะฮอร์โมนมีเมแทบอลิซึมที่สูงกว่าในชาย การผลิตแต่ละวันจะมากกว่าหญิงประมาณ 20 เท่า[8][9] หญิงยังไวต่อฮอร์โมนมากกว่าชายอีกด้วย[10]

ผลทางสรีรภาพ[แก้]

โดยทั่วไปแล้ว ฮอร์โมนแอนโดรเจน เช่น เทสโทสเตอโรน จะสนับสนุนการสังเคราะห์โปรตีนและดังนั้น การเจริญเติบโตของเนื้อเยื่อที่มีตัวรับแอนโดรเจน (androgen receptor)[11] ฮอร์โมนยังเรียกได้ว่ามีผลสร้างบุรุษภาพและทำให้โต[12]

  • ผลทำให้โต (Anabolic effects) รวมทั้งการเพิ่มขนาดและความแข็งแรงของกล้ามเนื้อ เพิ่มความหนาแน่นและความแข็งแรงของกระดูก และกระตุ้นให้สูงขึ้นและให้กระดูกเจริญเต็มที่เป็นผู้ใหญ่
  • ผลสร้างบุรุษภาพ (Androgenic effects) รวมทั้งการทำให้อวัยวะเพศเจริญเติบโตเต็มวัย โดยเฉพาะองคชาตและถุงอัณฑะในทารก และภายหลังคลอด (ปกติในช่วงวัยเริ่มเจริญพันธุ์) เสียงแตก ขนที่ใบหน้า (เช่นหนวดเครา) และขนรักแร้

ซึ่งผลหลายอย่างเหล่านี้เป็นลักษณะเฉพาะเพศชายทุติยภูมิ ผลของเทสโทสเตอโรนยังสามารถจัดตามอายุที่ปกติเกิดขึ้น หลังจากคลอดในทั้งหญิงชาย ผลโดยมากจะเป็นไปตามระดับและระยะที่มีเทสโทสเตอโรนอิสระเวียนในเลือด

ก่อนเกิด[แก้]

ผลก่อนเกิดแบ่งออกเป็นสองกลุ่ม โดยจัดตามระยะพัฒนาการ ระยะแรกเกิดขึ้นระหว่าง 4-6 อาทิตย์ในครรภ์ ตัวอย่างรวมทั้งการสร้างอวัยวะเพศ รวมทั้ง midline fusion, การสร้างท่อปัสสาวะในองคชาต, การทำถุงอัณฑะให้บางและมีรอยย่น, การเพิ่มขนาดองคชาต, ตลอดจนพัฒนาการของต่อมลูกหมากและถุงพักน้ำอสุจิ (seminal vesicle) ด้วย แม้ว่าบทบาทของเทสโทสเตอโรนจะน้อยกว่าของ dihydrotestosterone มาก

ในไตรมาสที่สอง ระดับแอนโดรเจนจะขึ้นอยู่กับเพศ[13] ไตรมาสนี้มีผลต่อการสร้างบุรุษภาพและสตรีสภาพของทารก และเป็นตัวพยากรณ์พฤติกรรมเพศหญิงหรือชาย ได้ดียิ่งกว่าระดับฮอร์โมนแม้ในตัวเองเมื่อเป็นผู้ใหญ่ เช่น ระดับเทสโทสเตอโรนของมารดาระหว่างมีครรภ์จะมีสหสัมพันธ์กับพฤติกรรมตามเพศของลูกสาว ที่มีกำลังยิ่งกว่าระดับฮอร์โมนของตัวลูกสาวเองเมื่อเป็นผู้ใหญ่[14]

ทารกวัยต้น[แก้]

ผลของแอนโดรเจนต่อทารกวัยต้นเป็นเรื่องที่เข้าใจน้อยที่สุด ในอาทิตย์แรกของทารกชาย ระดับเทสโทสเตอโรนจะสูงขึ้น ระดับจะอยู่ในพิสัยที่มีในช่วงวัยรุ่นเป็นเวลา 2-3 เดือน แต่ปกติจะลดลงถึงระดับเด็กที่แทบตรวจจับไม่ได้โดยอายุ 4-6 เดือน[15][16]

หน้าที่ของระดับฮอร์โมนที่สูงขึ้นในมนุษย์ยังไม่ชัดเจน มีการคาดว่า เป็นการสร้างบุรุษภาพในสมอง เนื่องจากว่าอวัยวะอื่น ๆ ไม่เปลี่ยนแปลงอย่างสำคัญ[17] สมองเพศชายจะเกิดบุรุษภาพอาศัยกระบวนการ aromatization ที่เปลี่ยนเทสโทสเตอโรนให้เป็นเอสโทรเจน ซึ่งสามารถข้ามส่วนกั้นระหว่างเลือด-สมอง (blood-brain barrier) เข้าไปในสมอง เทียบกับทารกหญิงที่จะมีโปรตีน α-fetoprotein เข้ายึดกับเอสโทรเจน ทำให้สมองของหญิงไม่เปลี่ยนแปลง[18]

ก่อนวัยเริ่มเจริญพันธุ์[แก้]

แอนโดรเจนจะเพิ่มขึ้นอย่างมีผลก่อนวัยเริ่มเจริญพันธุ์ทั้งในหญิงชาย ผลรวมทั้งกลิ่นตัวเหมือนผู้ใหญ่ ผิวหนังและผมมัน สิว การเกิดของขนหัวหน่าว ขนรักแร้ การเจริญเติบโตอย่างรวดเร็ว การเจริญเติบโตของกระดูกเป็นผู้ใหญ่ และขนที่ใบหน้า[19]

วัยเริ่มเจริญพันธุ์[แก้]

ผลในวัยเริ่มเจริญพันธุ์จะเกิดเมื่อระดับแอนโดรเจนสูงกว่าระดับในหญิงผู้ใหญ่เป็นเวลาหลายเดือนหรือหลายปี ในชาย นี้มักจะเกิดในช่วงหลัง ๆ และจะเกิดในหญิงหลังจากมีระดับเทสโทสเตอโรนอิสระในเลือดสูงเป็นระยะเวลานาน ผลรวมทั้ง[19][20]

การเจริญของเนื้อเยื่อที่ผลิตตัวอสุจิในอัณฑะ ภาวะเจริญพันธุ์ของชาย การขยายขนาดขององคชาตหรือปุ่มกระสัน การเพิ่มอารมณ์ทางเพศ และการแข็งตัวขององคชาตหรือการมีเลือดคั่งคัดในปุ่มกระสัน การเติบโตของขากรรไกร หน้าผาก คาง จมูก และการเปลี่ยนรูปของกระดูกใบหน้า โดยทำงานสัมพันธ์กับ human growth hormone[21] การเจริญเติบโตของกระดูกจนถึงขนาดผู้ใหญ่และการหยุดโต ซึ่งเกิดโดยอ้อมผ่านเมแทบอไลต์ของ estradiol (ซึ่งเป็นฮอร์โมนหญิงหลัก) และดังนั้น จะเกิดอย่างค่อย ๆ เป็นค่อย ๆ ไปในชายเทียบกับหญิง กล้ามเนื้อจะเพิ่มขนาดและความแข็งแรง ไหล่จะใหญ่ขึ้นและซี่โครงขยายใหญ่ขึ้น เสียงแตก และลูกกระเดือกโตขึ้น ต่อมไขมัน (sebaceous glands) จะขยายใหญ่ขึ้น ซึ่งอาจทำให้เกิดสิว ไขมันใต้ผิวหนังบนใบหน้าจะลดลง ขนหัวหน่าวจะขยายไปถึงต้นขาและไปทางสะดือ ขนใบหน้าจะเกิด (เช่น จอนผม หนวด เครา) ผมจะบาง (androgenetic alopecia) ขนหน้าอก ขนรอบหัวนม ขนรอบทวารหนัก ขนขา และขนรักแร้ จะเพิ่ม

ผู้ใหญ่[แก้]

ผลของเทสโทสเตอโรนในผู้ใหญ่เห็นได้ชัดในชายมากกว่าหญิง แต่น่าจะสำคัญต่อทั้งสองเพศ ผลอาจลดลงเมื่อระดับเทสโทสเตอโรนลดลงตามอายุ[22]

พิสัยอ้างอิงของค่าเลือด แสดงระดับเทสโทสเตอโรนสำหรับชายผู้หใญ่เป็นสีฟ้าอ่อนที่ตรงกลางด้านซ้าย

หน้าที่ทางชีวภาพ[แก้]

เทสโทสเตอโรนจำเป็นในการสร้างตัวอสุจิโดยปกติ เพราะมันออกฤทธิ์ต่อ Sertoli cell ซึ่งกระตุ้นให้เซลล์ต้นกำเนิดตัวอสุจิ (spermatogonia) ซึ่งเป็นเซลล์สืบพันธุ์ที่ยังไม่แตกต่างให้เกิดความแตกต่าง และเป็นตัวควบคุมการตอบสนองแบบฉับพลันของเขตสมองคือแกนไฮโปทาลามัส-พิทูอิทารี-อะดรีนัล (HPA) เมื่อมีการแข่งสถานะทางสังคม[23] แอนโดรเจนรวมทั้งเทสโทสเตอโรนจะเพิ่มการเจริญเติบโตของกล้ามเนื้อ เทสโทสเตอโรนยังควบคุมการมีตัวรับ thromboxane A2 ของเซลล์ megakaryocyte ซึ่งอยู่ในไขกระดูกและทำหน้าที่ผลิตเกล็ดเลือด และควบคุมตัวเกล็ดเลือดเอง ดังนั้น จึงควบคุมการแข็งตัวของเลือดในมนุษย์ด้วย[24][25]

ความเสี่ยงต่อสุขภาพ[แก้]

เทสโทสเตอโรนดูจะไม่เพิ่มความเสี่ยงมะเร็งต่อมลูกหมาก แต่ว่า สำหรับคนไข้มะเร็งต่อมลูกหมากที่ผ่านการรักษา testosterone deprivation therapy ซึ่งใช้ยาเพื่อไม่ให้ผลิตแอนโดรเจน การมีระดับเทสโทสเตอโรนที่สูงกว่าระดับที่ถูกตอนมีหลักฐานว่า เพิ่มอัตราการกระจายตัวของมะเร็งต่อมลูกหมากที่มี[26][27][28]

ผลงานวิจัยขัดแย้งกันเรื่องความสำคัญของเทสโทสเตอโรนต่อสุขภาพของหลอดเลือดและหัวใจ[29][30] อย่างไรก็ดี การธำรงระดับปกติในชายสูงอายุมีหลักฐานว่า ช่วยปรับปรุงด้าน ๆ ต่างที่เชื่อว่า ลดความเสี่ยงโรคหลอดเลือดและหัวใจ เช่น มีดัชนีมวลกายที่ดีกว่า ลดไขมันรอบพุง ลดระดับคอเลสเตอรอล และมีเมแทบอลิซึมของน้ำตาลที่ดีกว่า[31]

ในหญิง ระดับแอนโรเจนที่สูงสัมพันธ์กับการมีประจำเดือนไม่สม่ำเสมอทั้งในกลุ่มคนไข้และกลุ่มประชากรปกติ[32]

อารมณ์เพศ[แก้]

เมื่อน้ำอสุจิที่ประกอบด้วยเทสโทสเตอโรนและเอ็นดอร์ฟินหลั่งออกไปกระทบกับผนังคอมดลูกหลังจากมีเพศสัมพันธ์ หญิงจะได้รับเทสโทสเตอโรน เอ็นดอร์ฟิน และออกซิโทซินเพิ่ม เป็นการปรับปรุงสิ่งแวดล้อมทางสรีรภาพของอวัยวะเพศภายในของหญิงให้ดียิ่งขึ้นเพื่อการตั้งครรภ์ และต่อจากนั้น เพื่อบำรุงรักษาทารกในครรภ์ในช่วงก่อนเป็นตัวอ่อน (pre-embryonic stage) ส่วนชายเมื่อถึงจุดสุดยอดจะได้เอ็นดอร์ฟินและออกซิโทซินเพิ่ม ทำให้รู้สึกรักใคร่และรู้สึกเหมือนพ่อ ซึ่งเป็นช่วงเวลาเดียวที่ชายมีออกซิโทซินในระดับที่แข่งกับหญิงได้[33] ระดับเทสโทสเตอโรนในกายจะเป็นไปตามจังหวะรอบวันที่ถึงจุดสูงสุดแต่ละวัน ไม่ว่าจะมีกิจกรรมทางเพศหรือไม่[34]

ความเสียวสุดยอดทางเพศของหญิงที่รู้สึกผ่อนคลายเป็นหลักมีสหสัมพันธ์กับระดับเทสโทสเตอโรน แต่ว่า ความเสียวสุดยอดของชายไม่มีสหสัมพันธ์กับระดับเทสโทสเตอโรน และก็ไม่มีสหสัมพันธ์ระหว่างระดับเทสโทสเตอโรนกับ sexual assertiveness ทั้งในชายหญิง[35]

ในหญิง อารมณ์ทางเพศและการสำเร็จความใคร่ด้วยตนเองจะเพิ่มความเข้มข้นของเทสโทสเตอโรนเล็กน้อย[36] เทียบกับชาย ที่ระดับสเตอรอยด์ต่าง ๆ ในเลือดรวมทั้งระดับเทสโทสเตอโรน จะสูงขึ้นอย่างสำคัญ[37]

สัตว์เลี้ยงลูกด้วยนม[แก้]

งานศึกษาแสดงว่า ระดับอารมณ์เพศในหนูไวต่อการลดระดับเทสโทสเตอโรน เมื่อหนูที่ขาดเทสโทสเตอโรนได้ฮอร์โมนในระดับกลาง ๆ พฤติกรรมทางเพศ (การร่วมเพศ เพื่อนที่ชอบ เป็นต้น) ก็จะกลับมาเหมือนเดิม แต่จะไม่เป็นเช่นนี้ถ้าได้ในระดับน้อย ๆ ดังนั้น สัตว์เลี้ยงลูกด้วยนมเช่นนี้อาจเป็นแบบจำลองเพื่อศึกษาประชากรคนไข้มนุษย์ที่ขาดอารมณ์ทางเพศ เช่น hypoactive sexual desire disorder[38]

ในสัตว์เลี้ยงลูกด้วยนมทุกชนิดที่ตรวจสอบ ระดับเทสโทสเตอโรนของตัวผู้จะสูงขึ้นเมื่อเจอตัวเมีย "ใหม่" การเพิ่มฮอร์โมนเป็นรีเฟล็กซ์ในหนูหริ่งตัวผู้ สัมพันธ์กับระดับอารมณ์เพศที่มีในเบื้องต้น[39]

ในสัตว์อันดับวานรที่ไม่ใช่มนุษย์ เทสโทสเตอโรนในวัยเริ่มเจริญพันธุ์อาจกระตุ้นให้มีอารมณ์เพศ ซึ่งทำให้ลิงหาประสบการณ์ทางเพศกับตัวเมียมากขึ้น และดังนั้น ก็จะทำให้ชอบใจในตัวเมีย[40] งานวิจัยยังแสดงด้วยว่า ถ้ากำจัดเทสโทสเตอโรนออกจากระบบของชายผู้ใหญ่ หรือวานรตัวผู้ที่โตแล้ว ความต้องการทางเพศจะลดลง แต่จะไม่ลดสมรรถภาพในกิจกรรมทางเพศ (รวมทั้งขึ้นขี่ หลั่งน้ำอสุจิ เป็นต้น)[40]

งานศึกษาแสดงว่าระดับเทสโทสเตอโรนของหนูตัวผู้จะเพิ่มขึ้นตอบสนองต่อสิ่งเร้าที่เคยเป็นกลางมาก่อนหลังจากฝึก (conditioned) ให้ตอบสนองทางเพศ[41] โดยทำให้เกิดรีเฟล็กซ์ที่องคชาต (เช่น การแข็งตัวและการหลั่งอสุจิ) ซึ่งทฤษฎีการแข่งขันของตัวอสุจิ (Sperm competition theory) อธิบายว่า ช่วยผลิตตัวอสุจิที่มีโอกาสชนะสูงขึ้น ทำให้มีโอกาสสูงขึ้นในการสืบพันธุ์ ในเมื่อหนูตัวผู้มากกว่าหนึ่งตัวผสมพันธุ์กับตัวเมีย

ชาย[แก้]

ในชาย ระดับเทสโทสเตอโรนที่สูงขึ้นสัมพันธ์กับกิจกรรมทางเพศ[42] ในชายรักต่างเพศ ฮอร์โมนก็จะสูงขึ้นด้วยแม้เพียงแค่คุยกับผู้หญิงระยะสั้น ๆ และระดับเทสโทสเตอโรนที่สูงขึ้นในชายก็จะสัมพันธ์กับระดับที่ผู้หญิงรู้สึกว่าผู้ชายกำลังพยายามทำให้เธอประทับใจ[43]

ชายที่ดูหนังโป๊จะมีระดับเทสโทสเตอโรนสูงขึ้นโดยเฉลี่ย 35% โดยถึงขีดสูงสุดที่ 60-90 นาทีหลังจากหนังจบลง แต่ปรากฏการณ์นี้ไม่พบในชายที่ดูหนังที่ไม่มีเรื่องเซ็กซ์[44] นอกจากนั้นแล้ว ชายที่ดูหนังโป๊ยังรายงานว่า มีกำลังใจเพิ่มขึ้น ต้องการแข่งขันเพิ่มขึ้น และหมดแรงน้อยลง[45] ความผ่อนคลายที่เกิดหลังอารมณ์เพศก็สัมพันธ์กับระดับเทสโทสเตอโรนด้วย[46]

ระดับเทสโทสเตอโรนซึ่งเป็นฮอร์โมนที่มีผลต่อพฤติกรรมทางเพศของชาย จะขึ้นอยู่ว่าได้กลิ่นหญิงที่ตกไข่หรือหญิงที่ไม่ตกไข่ ชายที่ได้กลิ่นหญิงผู้กำลังตกไข่จะธำรงระดับเทสโทสเตอโรนสม่ำเสมอในระดับที่สูงกว่าชายที่ได้กลิ่นหญิงที่ไม่ตกไข่ ดังนั้น ทั้งระดับเทสโทสเตอโรนและอารมณ์เพศของชาย จะขึ้นอยู่กับวงจรทางฮอร์โมนของหญิง[47]

นี่เป็นเรื่องที่อาจสัมพันธ์กับสมมติฐานการเปลี่ยนแปลงเหตุการตกไข่ (ovulatory shift hypothesis)[48] ที่อ้างว่า ผู้ชายปรับตัวให้ตอบสนองต่อวงจรการตกไข่ของหญิงโดยจะรู้ว่า เมื่อไรหญิงเจริญพันธุ์มากที่สุด และผู้หญิงจะสืบหาผู้ชายที่ชอบใจเมื่อถึงจุดที่เจริญพันธุ์มากที่สุด ซึ่งฮอร์โมนอาจเป็นตัวขับเคลื่อนพฤติกรรมของทั้งสอง ชายที่มีขีดเริ่มเปลี่ยนอารมณ์เพศต่ำกว่ามีโอกาสใส่ใจในเรื่องเพศสูงกว่า และเทสโทสเตอโรนอาจทำงานโดยเพิ่มความใส่ใจในสิ่งเร้าที่อยู่ในประเด็น[49]

หญิง[แก้]

แอนโดรเจนอาจจะคุมลักษณะทางกายภาพของเนื้อเยื่อในช่องคลอด และมีส่วนในความตื่นตัวทางเพศของอวัยวะเพศหญิง[50] ระดับเทสโทสเตอโรนของหญิงจะสูงกว่าเมื่อวัดก่อนมีเพศสัมพันธ์เทียบกับก่อนนอนกอดกัน และเมื่อวัดหลังมีเพศสัมพันธ์เทียบกับหลังจากนอนกอดกัน[51] แต่หลังจากให้เทสโทสเตอโรน จะใช้เวลาบ้างก่อนอวัยวะเพศจะตื่นตัว นอกจากนั้นแล้ว อวัยวะเพศที่ตื่นตัวอาจรู้สึกไวกว่าและทำให้มีพฤติกรรมทางเพศมากกว่า[52]

ถ้าหญิงมีระดับพื้นฐาน (baseline) ของเทสโทสเตอโรนที่สูงกว่า ก็จะมีความตื่นตัวทางเพศมากกว่า แต่ก็มีระดับเทสโทสเตอโรนที่เพิ่มขึ้นน้อยกว่า ซึ่งแสดงว่า อาจจะมีขีดสูงสุดที่เทสโทสเตอโรนจะมีผลในหญิง การคิดเรื่องเพศยังเปลี่ยนระดับเทสโทสเตอโรนในหญิงด้วย แต่ไม่เปลี่ยนระดับคอร์ติซอล (ฮอร์โมนเครียด) ดังนั้น ยาคุมกำเนิดโดยฮอร์โมนอาจมีผลต่อระดับเทสโทสเตอโรนที่เป็นการตอบสนองต่อความคิดทางเพศ[53]

เทสโทสเตอโรนอาจมีประสิทธิผลต่อโรคความตื่นตัวทางเพศของหญิง (female sexual arousal disorder)[54] โดยมียาแบบแผ่นแปะผิวหนัง แม้จะไม่มีสูตรยาแอนโดรเจนที่องค์การอาหารและยาสหรัฐ (FDA) อนุมัติให้ใช้รักษาการขาดแอนโดรเจน แต่ว่า แพทย์ก็ยังสามารถสั่งยานอกป้ายเพื่อรักษาการมีอารมณ์เพศต่ำ หรืออวัยวะเพศไม่ทำงานในหญิงสูงอายุ และการให้เทสโทสเตอโรนรักษาหญิงวัยทองก็ใช้ได้ตราบที่ได้เอสโทรเจนไปด้วย[54]

ความสัมพันธ์กับคู่[แก้]

ความรักจะลดระดับเทสโทสเตอโรนในชายในขณะที่เพิ่มระดับในหญิง ซึ่งคาดว่า เป็นความเปลี่ยนแปลงชั่วคราวเพื่อลดความแตกต่างทางพฤติกรรมระหว่างเพศ[33] แต่ว่า ก็มีการเสนอว่า หลังจากระยะฮันนีมูนประมาณ 1-3 ปี ในความสัมพันธ์ ระดับเทสโทสเตอโรนที่เปลี่ยนไปจะกลับคืนสู่สภาพเดิม[33]

ชายที่ผลิตเทสโทสเตอโรนน้อยกว่า มีโอกาสมีความสัมพันธ์กับคู่รักสูงกว่า[55] และ/หรือแต่งงาน[56] และชายที่ผลิตเทสโทสเตอโรนมากกว่ามีโอกาสหย่าสูงกว่า[56] แต่ว่า อะไรเป็นเหตุยังไม่สามารถกำหนดได้จากค่าสหสัมพันธ์ที่ปรากฏเช่นนี้

การแต่งงานหรือความสัมพันธ์แบบผูกขาดสามารถลดระดับเทสโทสเตอโรนได้ด้วย[57] ชายโสดที่ไม่มีประสบการณ์ด้านความสัมพันธ์มีระดับเทสโทสเตอโรนที่ต่ำกว่าชายที่มีประสบการณ์แล้ว ซึ่งเสนอว่า ชายที่มีประสบการณ์จะมีสภาพการแข่งขันที่สูงกว่าผู้ไม่มีประสบการณ์[58]

ชายที่มีคู่แล้วที่ทำกิจรักษาความสัมพันธ์เช่นใช้เวลาร่วมกับคู่หรือกับลูก มีระดับเทสโทสเตอโรนที่ไม่แตกต่างจากเวลาที่ไม่ทำกิจกรรมเช่นนี้ รวม ๆ กันแล้ว ผลแสดงว่า การมีกิจกรรมที่ต้องแข่งขันกัน ไม่ใช่กิจกรรมรักษาความสัมพันธ์ ที่สัมพันธ์กับความเปลี่ยนแปลงของระดับเทสโทสเตอโรน[59]

ชายที่ผลิตเทสโทสเตอโรนมากกว่ามีโอกาสมีชู้มากกว่า[56] ระดับเทสโทสเตอโรนไม่ได้ขึ้นอยู่กับว่าคู่จะอยู่ใกล้ ๆ หรือไม่ (ไม่ว่าจะอยู่ในเมืองเดียวกันหรือต่างเมืองกัน) เพราะว่า ทั้งสองมีระดับเทสโทสเตอโรนไม่ต่างกัน[55] ส่วนในหญิง การมีคู่อยู่ใกล้ ๆ อาจจำเป็นในปฏิสัมพันธ์ระหว่างเทสโทสเตอโรน-คู่ คือ หญิงที่มีคู่อยู่ในเมืองเดียวกันมีระดับเทสโทสเตอโรนที่ต่ำกว่าหญิงที่มีคู่อยู่ต่างเมือง[60]

ความเป็นพ่อ[แก้]

ความเป็นพ่อยังลดระดับเทสโทสเตอโรนในชาย ซึ่งเแสดงว่าความเปลี่ยนแปลงทางอารมณ์และพฤติกรรมที่เกิดช่วยทำให้ดูแลลูก[61] เมื่อเด็กเป็นทุกข์ ความเปลี่ยนแปลงของระดับเทสโทสเตอโรนจะเป็นตัวบอกลักษณะของพ่อ ถ้าระดับลดลง พ่อจะเห็นใจลูกมากกว่าพ่อที่ระดับเพิ่ม[62]

พฤติกรรมและบุคลิกภาพ[แก้]

ระดับเทสโทสเตอโรนยังมีบทบาทสำคัญในการเสี่ยงเมื่อต้องตัดสินใจเรื่องการเงิน[63][64]

ความดุและพฤติกรรมอาชญากรรม[แก้]

งานศึกษาโดยมากสนับสนุนความสัมพันธ์ระหว่างพฤติกรรมอาชญากรรมกับระดับเทสโทสเตอโรน แม้ว่าความสัมพันธ์จะจำกัดถ้าตรวจสอบแต่ละเพศต่างหาก ๆ งานโดยมากพบว่า ระดับเทสโทสเตอโรนสัมพันธ์กับพฤติกรรมหรือลักษณะบุคลิกภาพที่สัมพันธ์กับอาชญากรรม เช่น พฤติกรรมต่อต้านสังคมและการติดเหล้า งานจำนวนมากตรวจสอบความสัมพันธ์ระหว่างพฤติกรรมหรือความรู้สึกดุเทียบกับเทสโทสเตอโรน โดยงานครึ่งหนึ่งพบว่า มีความสัมพันธ์ แต่อีกครึ่งก็ไม่พบ งานศึกษาเกือบทั้งหมดพบว่า พฤติกรรมอาชญากรรมของเด็กไม่สัมพันธ์กับระดับเทสโทสเตอโรน[65]

เทสโทสเตอโรนเป็นปัจจัยเพียงอย่างเดียวในหลาย ๆ ปัจจัยที่มีอิทธิพลต่อความดุ และประสบการณ์ในอดีตหรือสิ่งเร้าในสิ่งแวดล้อมก็มีค่าสหสัมพันธ์ที่มีกำลังกว่า งานศึกษา 2-3 งานพบว่า สารอนุพันธุ์ของเทสโทสเตอโรน คือ estradiol (ซึ่งเป็นเอสโทรเจนชนิดหนึ่ง) อาจมีบทบาทสำคัญในความดุของชาย[65][66][67][68] ยังมีงานศึกษาที่พบว่า เทสโทสเตอโรนอำนวยความดุโดยควบคุมตัวรับ vasopressin ในเขตสมองไฮโปทาลามัส[69]

ฮอร์โมนทางเพศบางกรณีอาจสนับสนุนให้ประพฤติอย่างยุติธรรม งานศึกษาปี 2553 ให้ผู้ร่วมการทดลองหญิงต่อรองแบ่งเงินที่มีจริง ๆ โดยเป็นเกมการทดลองทางเศรษฐศาสตร์ที่เรียกว่า Ultimatum (ข้อเสนอขาด) ที่ให้ฝ่ายหนึ่งเสนอแบ่งเงิน โดยทำได้ทั้งแบบยุติธรรมและไม่ยุติธรรมโดยเป็นข้อเสนอขาด ซึ่งอีกฝ่ายหนึ่งอาจจะยอมรับหรือปฏิเสธก็ได้ ยิ่งเสนอแบ่งให้ยุติธรรมเท่าไร ก็มีโอกาสน้อยลงที่อีกฝ่ายหนึ่งจะปฏิเสธเท่านั้น ถ้าอีกฝ่ายหนึ่งปฏิเสธข้อเสนอ ทั้งสองฝ่ายก็จะไม่ได้อะไร ผู้ร่วมการทดลองที่เสริมระดับเทสโทสเตอโรนให้สูงขึ้นโดยทั่วไปเสนอการแบ่งที่ดีกว่า ยุติธรรมกว่า ผู้ที่ได้ยาหลอก และดังนั้น ลดความเสี่ยงการถูกปฏิเสธจนน้อยที่สุด[70] งานศึกษาต่อมาที่ใช้เกมการทดลองอีกอย่างหนึ่ง (public goods game) ยืนยันผลเช่นนี้สำหรับหญิงในระดับหนึ่ง[71]

แต่งานปี 2552 ที่ศึกษาใช้เกมเดียวกันกลับพบว่า ชายที่มีเทสโทสเตอโรนสูงใจดีน้อยกว่า 27% และชายที่มีเทสโทสเตอโรนต่ำสุดใจดีกว่า 560%[72] งานวิจัยปี 2547 พบว่าวัยรุ่นที่ใช้สเตอรอยด์เพื่อสร้างกล้ามเนื้อ (anabolic steroid) ซึ่งเพิ่มระดับเทสโทสเตอโรน สัมพันธ์กับความรุนแรงที่เพิ่มขึ้น[73] งานศึกษาอื่นยังพบว่า การให้เทสโทสเตอโรนเพิ่มความก้าวร้าวทางคำพูดและความโกรธแก่ผู้ร่วมการทดลองบางคน[74]

เทสโทสเตอโรนมีสหสัมพันธ์อย่างสำคัญกับความดุและพฤติกรรมแข่งขัน โดยมีทฤษฎี 2 อย่างที่อธิบายเรื่องนี้[75]

ทฤษฎีแรกคือสมมติฐานการท้าทาย (challenge hypothesis) ซึ่งอ้างว่า เทสโทสเตอโรนจะเพิ่มขึ้นในวัยเริ่มเจริญพันธุ์ เพื่ออำนวยพฤติกรรมการสืบพันธุ์และการแข่งขัน ซึ่งรวมความดุด้วย[75] ดังนั้น จึงเป็นการแข่งขันท้าทายในสัตว์ตัวผู้ที่อำนวยให้เกิดความดุและความรุนแรง[75] งานศึกษายังพบสหสัมพันธ์โดยตรงระหว่างระดับเทสโทสเตอโรนกับสถานะทางสังคม โดยเฉพาะในกลุ่มอาชญากรรุนแรงที่สุดในคุกผู้มีระดับเทสโทสเตอโรนสูงสุด[75] งานเดียวกันยังพบว่า พ่อ (ที่ไม่อยู่ในการแข่งขันแล้ว) มีระดับเทสโทสเตอโรนต่ำสุดเทียบกับชายอื่น ๆ[75]

ทฤษฎีที่สอง คือ "evolutionary neuroandrogenic (ENA) theory of male aggression"[76][77] อ้างว่า เทสโทสเตอโรนและฮอร์โมนแอนโดรเจนอื่น ๆ มีวิวัฒนาการเพื่อสร้างบุรุษภาพในสมองเพื่อให้มีลักษณะช่างแข่งขัน แม้ถึงกระทั่งเสี่ยงความบาดเจ็บต่อตนเองและผู้อื่น ดังนั้น บุคคลที่มีภาวะสมองเช่นนั้นโดยเป็นผลของระดับเทสโทสเตอโรนและแอนโดรเจนทั้งก่อนคลอดและเมื่อเป็นผู้ใหญ่ จะสามารถหาทรัพยากรได้เพิ่มขึ้น และดึงดูดความสนใจและผสมพันธุ์กับคู่ให้มากที่สุดเท่าที่จะเป็นไปได้[76] การปรับสภาพสมองเช่นนี้ไม่ใช่อำนวยโดยระดับเทสโทสเตอโรนเมื่อเป็นผู้ใหญ่เท่านั้น แต่รวมการได้รับเทสโทสเตอโรนเมื่อเป็นทารกในครรภ์ด้วย

ระดับเทสโทสเตอโรนที่ได้ก่อนคลอดซึ่งระบุโดยอัตราส่วนความยาวระหว่างนิ้วชี้กับนิ้วนางที่ต่ำ และที่ได้เมื่อเป็นผู้ใหญ่ เพิ่มความเสี่ยงการทำฟาวล์หรือมีพฤติกรรมดุสำหรับนักฟุตบอลชาย[78] ยังมีงานศึกษาอื่นอีกที่พบว่าการได้เทสโทสเตอโรนระดับสูง หรือมีอัตราส่วนความยาวนิ้วที่น้อยกว่า มีสหสัมพันธ์กับความดุมากกว่าในชาย[79][80][81][82][83]

ระดับเทสโทสเตอโรนที่สูงขึ้นในการแข่งขันเป็นตัวพยากรณ์ความดุในชาย แต่ไม่เป็นในหญิง[84] ผู้ร่วมการทดลองที่มีปฏิสัมพันธ์กับปืนสั้นและเกมทดลองอย่างหนึ่ง มีระดับเทสโทสเตอโรนและความดุที่สูงขึ้น[85] การคัดเลือกโดยธรรมชาติอาจวิวัฒนาการให้ชายไวต่อสถานการณ์แข่งขันหรือที่ท้าทายสถานะทางสังคมมากกว่า และการทำงานของเทสโทสเตอโรนเป็นองค์ประกอบสำคัญในพฤติกรรมดุในสถานการณ์เหล่านั้น[86]

เทสโทสเตอโรนทำให้ดุโดยออกฤทธิ์ให้เขตใต้เปลือกสมอง (subcortical) ทำงาน ซึ่งอาจจะมีการยับยั้งภายใต้สถานการณ์ทางสังคมหรือทางครอบครัว และปรากฏในระดับต่าง ๆ ผ่านความคิด ความโกรธ ความดุร้ายทางวาจา การแข่งขัน การแข่งสถานะทางสังคม และความรุนแรงทางกาย[87] เทสโทสเตอโรนอำนวยให้ใส่ใจในเรื่องโหดร้ายและรุนแรง เช่น สนับสนุนให้ดูสิ่งเร้าที่รุนแรงนานขึ้น[88] ลักษณะปรากฏ (phenotype) ในโครงสร้างสมองที่เกี่ยวกับเทสโทสเตอโรนโดยเฉพาะ สามารถพยากรณ์พฤติกรรมดุในบุคคลตั้งแต่เด็กจนถึงผู้ใหญ่[89]

estradiol มีสหสัมพันธ์กับความดุของหนูหริ่งตัวผู้[90] นอกจากนั้นแล้ว การเปลี่ยนเทสโทสเตอโรนไปเป็น estradiol ยังควบคุมความดุของนกกระจอกตัวผู้ในฤดูผสมพันธุ์[91] หนูที่ได้สเตอรอย์อะนาบอลิค (anabolic) ซึ่งเพิ่มระดับเทสโทสเตอโรนยังดุมากกว่าเมื่อล่อ เพราะ "ไวต่อการคุกคาม"[92]

สมอง[แก้]

การแบ่งเพศมีผลต่อสมองด้วย[13] เพราะว่า เอนไซม์ aromatase จะเปลี่ยนเทสโทสเตอโรนเป็น estradiol ซึ่งมีหน้าที่สร้างบุรุษภาพในสมองของหนูหริ่งตัวผู้ ในมนุษย์ การสร้างบุรุษภาพต่อสมองของทารกสัมพันธ์กับการมีตัวรับแอนโดรเจนที่ใช้งานได้ ตามงานศึกษาที่สังเกตความชอบใจทางเพศของคนไข้ที่ผิดปกติแต่กำเนิดในด้านการสร้างแอนโดรเจนหรือด้านการทำงานของตัวรับแอนโดรเจน[93]

สมองของชายไม่เหมือนหญิง (อาจเพราะมีระดับเทสโทสเตอโรนที่ต่างกัน) อย่างหนึ่งก็คือขนาด คือสมองของชายโดยเฉลี่ยจะใหญ่กว่า[94] ชายปรากฏว่ามีใยประสาทที่มีปลอกหุ้มยาวถึง 176,000 กม. เมื่ออายุ 20 ปี เทียบกับของหญิงที่ยาว 149,000 กม. (น้อยกว่าประมาณ 15%)[95]

การให้เทสโทสเตอโรนในขนาดที่มากกว่าร่างกายผลิต ไม่มีผลระยะสั้นโดยตรงต่อพื้นอารมณ์หรือพฤติกรรม ของชายที่สุขภาพดี 43 คนเป็นเวลา 10 อาทิตย์[96] ระดับเทสโทสเตอโรนมีสหสัมพันธ์กับความกล้าเสี่ยงในการเลือกอาชีพของผู้หญิง[63][97]

ความใส่ใจ ความจำ และสมรรถภาพด้านพื้นที่และทิศทาง (spatial ability) เป็นหน้าที่ทางการรู้คิดที่สำคัญที่เทสโทสเตอโรนมีอิทธิพลในมนุษย์ หลักฐานเบื้องต้นแสดงว่า ระดับเทสโทสเตอโรนที่ต่ำอาจเป็นปัจจัยเสี่ยงต่อความเสื่อมการรู้คิด และในที่สุดต่อภาวะสมองเสื่อมคล้ายกับโรคอัลไซเมอร์[98][99][100][101] ซึ่งเป็นหลักฐานหลักในการแพทย์ยืดชีวิต ที่จะใช้เทสโทสเตอโรนเพื่อชะลออายุ หลักฐานโดยมากแสดงว่า มีความสัมพันธ์ระหว่างสมรรถภาพในเรื่องพื้นที่/ทิศทางกับระดับเทสโทสเตอโรนที่เวียนอยู่ในเลือด โดยเป็นฟังก์ชันเส้นโค้งหรือกำลังสอง[102] ที่การผลิตแอนโดรเจนทั้งเกินหรือขาด มีผลลบต่อระบบการรู้คิด

กำเนิดของสเตอรอยด์ (steroidogenesis) ของมนุษย์ แสดงเทสโทสเตอโรนที่ตอนกลางใกล้ ๆ ข้างล่าง[103]

ชีวเคมี[แก้]

ชีวสังเคราะห์[แก้]

เหมือนกับฮอร์โมนแบบสเตอรอยด์อื่น ๆ เทสโทสเตอโรนสังเคราะห์มาจากคอเลสเตอรอล (ดูรูป)[104] ขั้นแรกในกระบวนการชีวสังเคราะห์ก็คือการแยก (ผ่านกระบวนการออกซิเดชัน) โซ่ข้างคอเลสเตอรอลด้วย cholesterol side-chain cleavage enzyme (P450scc, CYP11A1) ซึ่งเป็นเอนไซม์ cytochrome P450 oxidase ของไมโทคอนเดรีย โดยคอเลสเตอรอลจะเสียอะตอมคาร์บอน 6 อะตอมกลายเป็น pregnenolone ขั้นต่อไป เอนไซม์ CYP17A1 (17α-hydroxylase/17,20-lyase) ในร่างแหเอนโดพลาซึมจะดึงเอาคาร์บอนอีก 2 อะตอมออก กลายเป็นสเตอรอยด์แบบ C19 หลายอย่าง[105] ต่อจากนั้น เอนไซม์ 3β-hydroxysteroid dehydrogenase จะเป็นตัวออกซิไดส์เปลี่ยนกลุ่ม 3β-hydroxyl ให้เป็น androstenedione และในขั้นสุดท้ายที่เป็นตัวจำกัดอัตราการเปลี่ยน เอนไซม์ 17β-hydroxysteroid dehydrogenase จะเป็นตัวรีดิวซ์ androstenedione ซึ่งอยู่ในกลุ่ม C17 keto ให้เป็นเทสโทสเตอโรน

ในชาย เทสโทสเตอโรนโดยมาก (>95%) จะผลิตในอัณฑะ[2] และต่อมหมวกไตผลิตที่เหลือโดยมาก ในหญิงซึ่งผลิตน้อยกว่ามาก เทสโทสเตอโรนจะสังเคราะห์โดยต่อมหมวกไต, thecal cells ของรังไข่, และรกระหว่างการตั้งครรภ์[106]

ส่วน Leydig cell ในอัณฑะเป็นตัวผลิตฮอร์โมนโดยเฉพาะ[107] อ้ณฑะยังมี Sertoli cell ที่จำเป็นต้องได้เทสโทสเตอโรนเพื่อการสร้างสเปิร์ม เหมือนกับฮอร์โมนโดยมาก เทสโทสเตอโรนจะส่งไปที่ที่ต้องการผ่านเลือด และส่งโดยยึดกับโปรตีนโดยเฉพาะในเลือด คือ sex hormone-binding globulin (SHBG)

การผลิตเทสโทสเตอโรนควบคุมโดย Hypothalamic-pituitary-testicular axis

การควบคุม[แก้]

ในชาย เทสโทสเตอโรนโดยมากสังเคราะห์ใน Leydig cell ซึ่งจำนวนของเซลล์จะควบคุมโดยฮอร์โมน (ดูรูป) luteinizing hormone (LH) และ follicle-stimulating hormone (FSH) นอกจากนั้นแล้ว ปริมาณเทสโทสเตอโรนที่ Leydig cell ผลิตจะอยู่ใต้การควบคุมของ LH ซึ่งควบคุมการแสดงออกของยีน 17β-hydroxysteroid dehydrogenase[108]

ส่วนปริมาณเทสโทสเตอโรนที่ผลิตจะควบคุมโดย hypothalamic-pituitary-testicular axis (ดูรูป)[109] คือ เมื่อระดับเทสโทสเตอโรนต่ำ ไฮโปทาลามัสจะหลั่งฮอร์โมน gonadotropin-releasing hormone (GnRH) ซึ่งจกระตุ้นต่อมใต้สมองให้หลั่ง FSH และ LH ซึ่งก็จะกระตุ้นให้อัณฑะสังเคราะห์เทสโทสเตอโรน และในที่สุด ระดับเทสโทสเตอโรนที่สูงขึ้นก็จะเป็นวงวนป้อนกลับแบบลบที่ออกฤทธิ์ให้ไฮโปทาลามัสและต่อมใต้สมองยับยั้งการหลั่ง GnRH แล้วก็ FSH/LH ตามลำดับ

ปัจจัยที่มีผลต่อระดับเทสโทสเตอโรนอาจรวมทั้ง

  • อายุ - ระดับเทสโทสเตอโรนของชายจะค่อย ๆ ลดลงเมื่ออายุมากขึ้น[110][111] ปรากฏการณ์นี้บางครั้งเรียกว่า andropause (วัยทอง) หรืออวัยวะเพศทำงานน้อยเกินตั้งต้นเมื่อปลายชีวิต (late-onset hypogonadism)[112]
  • การออกกำลังกาย ที่เพิ่มความแข็งแรงและกล้ามเนื้อ (Resistance training) จะเพิ่มระดับเทสโทสเตอโรน[113] แต่ว่า ในชายสูงอายุ ภาวะเช่นนี้สามารถหลีกเลี่ยงโดยการบริโภคโปรตีน[114] ส่วนการออกกำลังกายที่ทำให้อึด (Endurance training) อาจทำให้ระดับเทสโทสเตอโรนลดลง[115]
  • สารอาหาร - การขาดวิตามินเออาจทำให้ระดับเทสโทสเตอโรนลดลงในเลือด[116] และการทานวิตามินดี (ซึ่งเป็น secosteroid) ในระดับ 400-1,000 IU/วัน (10-25 µg/วัน) จะเพิ่มระดับเทสโทสเตอโรน[117] การขาดธาตุสังกะสีจะลดระดับเทสโทสเตอโรน[118] แต่การทานเกินจะไม่มีผลต่อระดับเทสโทสเตอโรน[119]
  • น้ำหนักลด อาจทำให้ระดับเทสโทสเตอโรนเพิ่มขึ้น เพราะเซลล์ไขมัน (Fat cell) จะสังเคราะห์เอนไซม์ aromatase ซึ่งเปลี่ยนเทสโทสเตอโรน (ฮอร์โมนเพศชาย) เป็น estradiol (ฮอร์โมนเพศหญิง)[120] แต่ว่า ก็ไม่มีความสัมพันธ์ที่ชัดเจนระหว่างดัชนีมวลกายกับระดับเทสโทสเตอโรน[121]
  • การนอนหลับ - การหลับระยะตาเคลื่อนไหวอย่างรวดเร็ว (REM sleep) จะเพิ่มระดับเทสโทสเตอโรนตอนกลางคืน[122]
  • พฤติกรรม - การแข่งขันทางสังคมในบางกรณีจะกระตุ้นให้ชายหลั่งเทสโทสเตอโรน[123]
  • ยา - ยาต้านแอนโดรเจนทั้งแบบธรรมชาติและสังเคราะห์ เช่นชาที่ทำจากมินต์พันธุ์ Mentha spicata จะลดระดับเทสโทสเตอโรน[124][125][126] ชะเอมเทศสามารถลดการผลิตเทสโทสเตอโรนโดยมีผลมากกว่าในหญิง[127]

การกระจายตัว[แก้]

ในเลือด เทสโทสเตอโรน 98% จะยึดอยู่กับโปรตีน โดย 65% ยึดกับ sex hormone-binding globulin (SHBG) และ 33% ยึดอย่างอ่อน ๆ กับ human serum albumin[128] ระดับเทสโทสเตอโรนของชายผู้ใหญ่ (ที่เป็นอิสระหรือยึด) จะอยู่ที่ 10.4-24.3 nmol/L[ต้องการอ้างอิง] เทียบกับในหญิงที่ 30-70 ng/dL

เมแทบอลิซึม[แก้]

ทั้งเทสโทสเตอโรน และ 5α-DHT (Dihydrotestosterone) จะมีเมแทบอลิซึมโดยหลักในตับ[1][129] เทสโทสเตอโรนประมาณ 50% จะมีเมแทบอลิซึมแบบสังยุค (conjugation) ผ่านเอนไซม์ glucuronosyltransferase เป็น testosterone glucuronide และผ่าน sulfotransferase เป็น testosterone sulfate แม้ในระดับที่น้อยกว่า[1] เทสโทสเตอโรนอีก 40% จะผ่านเมแทบอลิซึมกับเอนไซม์ 5α-reductase, 5β-reductase, 3α-hydroxysteroid dehydrogenase และ 17β-HSD ตามลำดับกลายเป็น 17-ketosteroid คือ androsterone และ etiocholanolone ประมาณเท่า ๆ กัน[1][129][130] ซึ่งทั้งสองก็จะผ่านกระบวนการ glucuronidation และ (แม้จะน้อยกว่า) sulfation คล้ายกับของเทสโทสเตอโรน (ที่เรียกรวม ๆ ว่า กระบวนการ conjugation) ต่อไป[1][129]

เทสโทสเตอโรนสังยุคและเมทาบอไลต์ก็จะหลั่งออกจากตับเข้าสู่ระบบหัวใจหลอดเลือด แล้วขับออกทางปัสสาวะและน้ำดี[1][129][130] มีเทสโทสเตอโรนแค่ 2% ที่ขับออกทางปัสสาวะโดยไม่เปลี่ยนแปลง[129]

ในวิถีเมแทบอลิซึมของ 17-ketosteroid ในตับ เทสโทสเตอโรนจะเปลี่ยนด้วย 5α-reductase และ 5β-reductase เป็น Dihydrotestosterone คือ 5α-DHT และ 5β-DHT ที่ไม่มีฤทธิ์ตามลำดับ[1][129] แล้ว 3α-HSD ก็จะเปลี่ยน 5α-DHT และ 5β-DHT ไปเป็น 3α,5α-androstanediol และ 3α,5β-androstanediol ตามลำดับ[1][129] ต่อจากนั้น 17β-HSD ก็จะเปลี่ยน 3α,5α-androstanediol และ 3α,5β-androstanediol เป็น androsterone และ etiocholanolone ซึ่งก็จะผ่านกระบวนการ conjugation เป็นต้นเหมือนกับที่กล่าวด้านบน และขับออกจากร่างกาย[1][129]

3β,5α-Androstanediol (epiandrosterone) และ 3β,5β-androstanediol (epietiocholanolone) ก็สามารถเกิดในวิถีเมแทบอลิซึมนี้ด้วยเมื่อ 3β-HSD (แทน 3α-HSD) ออกฤทธิ์ต่อ 5α-DHT และ 5β-DHT แล้วเปลี่ยนเป็น epiandrosterone และ epietiocholanolone ตามลำดับ[131][132]

เทสโทสเตอโรนประมาณ 3% ในตับจะเปลี่ยนด้วย 17β-HSD ไปเป็น 4-androstenedione อย่างผันกลับได้[130]

นอกจากกระบวนการ conjugation และ วิถีเมแทบอลิซึม 17-ketosteroid แล้ว เทสโทสเตอโรนยังสามารถผ่านกระบวนการ hydroxylation และ oxidation โดยใช้เอนไซม์ cytochrome P450 ในตับ รวมทั้ง CYP3A4, CYP3A5, CYP2C9, CYP2C19, และ CYP2D6[133] โดยมี 6β-Hydroxylation และ (แม้น้อยกว่า) 16β-hydroxylation เป็นกระบวนการเปลี่ยนรูปหลัก[133] กระบวนการ 6β-hydroxylation ของเทสโทสเตอโรนมีเอนไซม์หลักเป็น CYP3A4 และ (แม้น้อยกว่า) CYP3A5 โดยเป็นกระบวนการเมแทบอลิซึมของเทสโทสเตอโรนในระบบ cytochrome P450 ถึง 75-80%[133]

นอกเหนือไปจาก 6β-hydroxytestosterone และ 16β-hydroxytestosterone เมแทบอไลต์ย่อยอื่น ๆ ที่ได้รวมทั้ง 1β-hydroxytestosterone, 2α/β-hydroxytestosterone, 11β-hydroxytestosterone, และ 15β-hydroxytestosterone[133][134] เอนไซม์ cytochrome P450 บางอย่างเช่น CYP2C9 และ CYP2C19 ยังสามารถเติมออกซิเจนให้กับเทสโทสเตอโรนที่ตำแหน่ง C17 เพื่อสร้าง androstenedione[133] เมแทบอไลต์โดยตรงจากเทสโทสเตอโรน คือ 5α-DHT และ estradiol มีฤทธิ์สำคัญทางชีวภาพ และสามารถสร้างทั้งในตับและนอกตับ[129]

5α-reductase จะเปลี่ยนเทสโทสเตอโรนประมาณ 5-7% ไปเป็น 5α-DHT โดยมีความเข้มข้นในเลือดที่ 10% ของเทสโทสเตอโรน และ aromatase จะเปลี่ยนเทสโทสเตอโรนประมาณ 0.3% เป็น estradiol[2][129][135][136] 5α-Reductase มีการแสดงออกมากในระบบสืบพันธุ์ของชาย รวมทั้งที่ต่อมลูกหมาก ถุงพักน้ำอสุจิ (seminal vesicle) และที่หลอดเก็บอสุจิ (epididymides)[137] ตลอดจนถึงผิวหนัง ปุ่มรากผม (hair follicle) และสมอง[138] ส่วน aromatase จะแสดงออกมากในเซลล์ไขมัน กระดูก และสมอง[139][140]

เทสโทสเตอโรนถึง 90% เปลี่ยนเป็น 5α-DHT ในเนื้อเยื่อ "androgenic" ที่มีระดับการแสดงออกของ 5α-reductase สูง[130] และเนื่องจาก 5α-DHT เป็นตัวทำการของตัวรับแอนโดรเจน (AR agonist) ที่มีฤทธิ์แรงกว่าเทสโทสเตอโรนเป็นหลายเท่า[141] จึงมีการประเมินว่า ผลของเทสโทสเตอโรนจะขยายเป็น 2-3 เท่าในเนื้อเยื่อเช่นนี้[142]

กลไกการออกฤทธิ์[แก้]

เทสโทสเตอโรนในมนุษย์และสัตว์มีกระดูกสันหลังอื่น ๆ ออกฤทธิ์ผ่านกลไกหลายอย่าง คือ ออกฤทธิ์ต่อตัวรับแอนโดรเจน (androgen receptor ตัวย่อ AR โดยตรงหรือโดยเป็น DHT) ซึ่งเป็นตัวรับในนิวเคลียส (nuclear receptor) และการแปรเป็น estradiol แล้วออกฤทธิ์ต่อตัวรับเอสโทรเจนบางอย่างทั้งในนิวเคลียสและบนเยื่อหุ้มเซลล์[143][144] แอนโดรเจนเช่นเทสโทสเตอโรนยังยึดและออกฤทธิ์ต่อ membrane androgen receptor ซึ่งเป็นตัวรับที่เยื่อหุ้มเซลล์ อีกด้วย[145][146][147]

เทสโทสเตอโรนที่เป็นอิสระ (T) จะส่งเข้าไปยังไซโทพลาซึมของเซลล์เป้าหมาย ที่มันสามารถเข้ายึดกับ AR แล้วรีดิวซ์เป็น 5α-dihydrotestosterone (DHT) โดยเอนไซม์ในไซโทพลาสซึมคือ 5α-reductase และเพราะ DHT จะเข้ายึดกับ AR เดียวกันแรงยิ่งกว่าเทสโทสเตอโรน ดังนั้น จึงมีฤทธิ์ทางแอนโดรเจนมากกว่าถึง 5 เท่า ของ T[148] ตัวรับเทสโทสเตอโรนหรือคอมเพล็กซ์รับ DHT จะเปลี่ยนรูป ทำให้มันสามารถเข้าไปในนิวเคลียสของเซลล์ และเข้ายึดกับลำดับนิวคลีโอไทด์โดยเฉพาะ ๆ บนโครโมโซมของดีเอ็นเอ จุดที่เข้ายึดเรียกว่า hormone response element (HREs) และมีอิทธิพลต่อการถอดรหัสยีนบางอย่าง ซึ่งเป็นผลที่ปรากฏของแอนโดรเจน

AR เกิดในระบบต่าง ๆ มากมายในร่างกายของสัตว์มีกระดูกสันหลัง และทั้งชายหญิงตอบสนองเช่นเดียวกันที่ฮอร์โมนระดับเดียวกัน ปริมาณเทสโทสเตอโรนที่ต่าง ๆ กันมากในช่วงก่อนคลอด ช่วงวัยเริ่มเจริญพันธุ์ และตลอดชีวิต สามารถอธิบายความแตกต่างระหว่างเพศของหญิงชาย กระดูกและสมองเป็นเนื้อเยื่อสำคัญสองอย่างในมนุษย์ที่ผลหลักของเทสโทสเตอโรนจะเกิดผ่านกระบวนการ aromatization แล้วเปลี่ยนเป็น estradiol โดยในกระดูก estradiol จะเร่งให้กระดูกอ่อนเปลี่ยนเป็นกระดูกแข็ง ทำให้ epiphysis ปิดและถึงจุดอวสานของการเจริญเติบโตของกระดูก

ในระบบประสาทกลาง เทสโทสเตอโรนก็จะผ่านกระบวนการ aromatization แล้วเปลี่ยนเป็น estradiol เหมือนกัน ซึ่ง (ไม่ใช่เทสโทสเตอโรน) ทำหน้าที่เป็นสัญญาณป้อนกลับที่สำคัญที่สุดต่อไฮโปทาลามัส (โดยเฉพาะในการหลั่งฮอร์โมน luteinizing hormone)[149] ในสัตว์เลี้ยงลูกด้วยนมมากมาย เอสโทรเจนที่ทำจากเทสโทสเตอโรนจะเป็นตัวทำบุรุษภาพของส่วนสมองที่ต่างกันระหว่างเพศ ทั้งในช่วงก่อนคลอดและใกล้ ๆ คลอด จึงเป็นตัวกำหนดพฤติกรรมทางเพศของชายต่อมา[150]

ทางการแพทย์[แก้]

แพทย์ใช้เทสโทสเตอโรนเป็นยารักษาชายที่ผลิตเทสโทสเตอโรนน้อยเกินไปหรือไม่ผลิตเลย และโรคมะเร็งเต้านมบางอย่าง[5] ซึ่งเรียกว่า hormone replacement therapy (HRT) หรือ testosterone replacement therapy (TRT) และธำรงระดับเทสโทสเตอโรนในเลือดให้อยู่ในพิสัยปกติ ส่วนปัญหาการผลิตเทสโทสเตอโรนที่น้อยลงตามอายุทำให้เกิดความสนใจใน androgen replacement therapy (การบำบัดโดยการแทนที่แอนโดรเจน)[151] แต่ก็ยังไม่ชัดเจนว่า การใช้เทสโทสเตอโรนในระดับต่ำเนื่องจากอายุจะมีผลดีหรือผลเสีย[152]

เทสโทสเตอโรนอยู่ในรายการยาที่จำเป็นขององค์การอนามัยโลก ซึ่งเป็นยาที่สำคัญที่สุดในระบบสาธารณสุขพื้นฐาน[153] เป็นยาที่ผลิตได้ทั่วไปโดยไม่มีสิทธิบัตร[5] โดยราคาจะขึ้นอยู่กับรูปแบบของยา[154] ซึ่งสามารถใช้เป็นครีมทา แผ่นแปะผิวหนัง ฉีดเข้าในกล้ามเนื้อ ยาทาที่แก้ม หรือยาทาน[5] ผลข้างเคียงสามัญของเทสโทสเตอโรนรวมทั้งมีสิว บวม และเต้านมโตในชาย[5]

ผลข้างเคียงรุนแรงที่อาจมีรวมการเป็นพิษต่อตับ โรคหัวใจ และความเปลี่ยนแปลงทางพฤติกรรม[5] หญิงหรือเด็กที่ได้ยา (โดยตั้งใจหรือบังเอิญ) อาจเกิดบุรุษภาพ[5] ไม่แนะนำให้บุคคลที่มีมะเร็งต่อมลูกหมากใช้ยา[5] และยาอาจมีผลเสียในช่วงการตั้งครรภ์หรือการให้นมลูก[5]

สัตว์อื่น ๆ[แก้]

สัตว์มีกระดูกสันหลังโดยมากมีเทสโทสเตอโรน เทสโทสเตอโรนและตัวรับแอนโดรเจนซึ่งอยู่ในนิวเคลียสของเซลล์ปรากฏเริ่มแรกในสัตว์มีกระดูกสันหลังมีขากรรไกใน Infraphylum คือ "Gnathostomata" (jawed vertebrates)[155] ส่วนสัตว์มีกระดูกสันหลังไม่มีขากรรไก (Agnathan) เช่น ปลาแลมป์เพรย์ทะเลไม่ผลิตเทสโทสเตอโรน แต่ใช้ 4-androstenedione เป็นฮอร์โมนเพศชาย[156]

ส่วนปลาผลิตฮอร์โมนที่ต่างกันเล็กน้อยที่เรียกว่า 11-ketotestosterone[157] ส่วนสิ่งที่คล้ายกันในแมลงก็คือ ecdysone[158]

การมีสเตอรอยด์ดาษดื่นอย่างนี้ในสัตว์ต่าง ๆ แสดงว่า ฮอร์โมนเพศมีประวัติทางวิวัฒนาการที่ยาวนาน[159]

ประวัติ[แก้]

องค์ประกอบในเลือดได้ปรากฏว่ามีฤทธิ์ต่อการทำงานของอัณฑะ เป็นองค์ประกอบที่ปัจจุบันเข้าใจว่าเป็นกลุ่มฮอร์โมนเพศชาย (androgenic hormone) เนื่องจากงานเกี่ยวกับการตอนและการปลูกถ่ายอัณฑะในเป็ดไก่ของ นพ. Arnold Adolph Berthold (พ.ศ. 2346-2404)[160] งานเกี่ยวกับฤทธิ์ของเทสโทสเตอโรนได้แรงสนับสนุนในปี 2432 เมื่อศาสตราจารย์แห่งมหาวิทยาลัยฮาร์วาร์ด Charles-Édouard Brown-Séquard (พ.ศ. 2360-2437) ฉีดตัวเองใต้ผิวหนังด้วย "ยาอายุวัฒนะ" (rejuvenating elixir) ซึ่งกลั่นมาจากอัณฑะของสุนัขและหนูตะเภา เขารายงานในวารสารการแพทย์ The Lancet ว่า เขากลับรู้สึกกระฉับกระเฉงและอยู่เป็นสุขอีก แต่ว่าผลอยู่เพียงชั่วคราว[161] ดังนั้น ความหวังของเขากับยาที่ว่าจึงหมดไป เมื่อถูกเยาะเย้ยโดยเพื่อนร่วมอาชีพ เขาจึงทิ้งงานในเรื่องกลไกและผลของแอนโดรเจนในมนุษย์

ในปี 2470 ศาสตราจารย์แผนกเคมีทางสรีรภาพแห่งมหาวิทยาลัยชิคาโก Fred C. Koch ได้แหล่งอัณฑะวัวแหล่งใหญ่ คือ คอกปศุสัตว์แห่งชิคาโก แล้วรับสมัครนักเรียนที่สามารถอดทนทำงานที่น่าเบื่อในการสกัดสารจากมัน ในปีนั้น ศ. กับนักศึกษาคนหนึ่งคือ Lemuel McGee สกัดสาร 20 มก. จากอัณฑะวัวรวมกันหนัก 40 ปอนด์ ที่เมื่อฉีดให้กับไก่แจ้ หมู และหนูที่ถูกตอน กลับสร้างบุรุษภาพในพวกมันอีก[162] มีอีกกลุ่มหนึ่งที่มหาวิทยาลัยอัมสเตอร์ดัมที่สกัดเทสโทสเตอโรนที่บริสุทธิ์ขึ้นจากอัณฑะวัวโดยวิธีคล้าย ๆ กันในปี 2477 แต่ว่า การสกัดฮอร์โมนจากเนื้อเยื่อสัตว์ที่มีขนาดพอจะศึกษาในมนุษย์ ก็เป็นไปไม่ได้จนกระทั่งบริษัทยายักษ์ในยุโรป คือ เชริ่ง (เบอร์ลิน ประเทศเยอรมนี) Organon (Oss ประเทศเนเธอร์แลนด์) และ Ciba (ปัจจุบันโนวาร์ติส, บาเซิล ประเทศสวิตเซอร์แลนด์) เริ่มโปรแกรมการวิจัยและพัฒนาสเตอรอยด์อย่างเต็มพิกัดในคริสต์ทศวรรษ 1930

กลุ่มนักวิจัยในบริษัท Organon เป็นพวกแรกที่สกัดฮอร์โมนได้โดยเฉพาะ ซึ่งเรียกในสิ่งตีพิมพ์เดือนพฤษภาคม 2478 มีชื่อเรื่องว่า On Crystalline Male Hormone from Testicles (Testosterone) [เกี่ยวกับฮอร์โมนเพศชายแบบผลึกจากอัณฑะ (เทสโทสเตอโรน)][163] โดยตั้งชื่อฮอร์โมนว่า "เทสโทสเตอโรน" จากรากศัพท์ของคำว่า testicle (อัณฑะ) กับ sterol และจากคำต่อท้ายของคำว่า คีโทน ส่วนโครงสร้างของฮอร์โมนเป็นผลงานของ ศ. ดร. อดอล์ฟ บูเทนันต์ แห่ง Gdańsk University of Technology ในเมืองกดัญสก์ ประเทศโปแลนด์ โดยได้รับอุปถัมภ์จาก บ. เชริ่ง[164][165]

การสังเคราะห์เทสโทสเตอโรนทางเคมีจากคอเลสเตอรอล ก็เริ่มทำได้ในปีเดียวกันเดือนสิงหาคมโดย ศ. บูเทนันต์ และเพื่อนร่วมงาน[166] ต่อมาอีกอาทิตย์เดียว กลุ่มของ Ciba นำโดย ศ. ดร. เลโอโปลด์ รูซิคกา (พ.ศ. 2430-2519) และเพื่อนร่วมงาน ก็พิมพ์ผลงานถึงวิธีการสังเคราะห์เทสโทสเตอโรนของตน[167] ต่อมาปี 2482 ศ. บูเทนันต์ และ ศ.รูซิคกา ร่วมรับรางวัลโนเบลสาขาเคมี สำหรับวิธีการสังเคราะห์เทสโทสเตอโรนที่ทำสำเร็จต่างหาก ๆ เริ่มจากคอเลสเตอรอล[165][168]

ต่อมา จึงมีการระบุเทสโทสเตอโรนว่าเป็น 17β-hydroxyandrost-4-en-3-one (C19H28O2) คือเป็นแอลกอฮอล์แบบ solid polycyclic โดยมีกลุ่มไฮดรอกซิลที่คาร์บอนตำแหน่งที่ 17 จึงชัดเจนว่า สามารถแต่งเติมเทสโทสเตอโรนสังเคราะห์โดยวิธีการต่าง ๆ เช่น esterification (ปฏิกิริยาระหว่างแอลกอฮอล์กับกรดกลายเป็นเอสเทอร์) และ alkylation (การย้ายกลุ่ม alkyl จากโมเลกุลหนึ่งไปยังอีกโมเลกุลหนึ่ง) การสังเคราะห์เอสเทอร์ต่าง ๆ ของเทสโทสเตอโรนที่มีฤทธิ์เป็นปริมาณมาก ๆ ในช่วงคริสต์ทศวรรษ 1930 ทำให้สามารถกำหนดผลของฮอร์โมน โดยงานวิจัยในสุนัขปี 2479 แสดงว่า เทสโทสเตอโรนยกระดับการคงไนโตรเจน (nitrogen retention) ไว้ได้ ซึ่งเป็นกลไกสำคัญของแอแนบอลิซึม ส่วนงานวิจัยปี 2483 ได้แสดงผลทั้ง anabolic และ androgenic ของ testosterone propionate ต่อชายบัณเฑาะก์ เด็กผู้ชาย และหญิง[169]

ดังนั้นระยะช่วงต้นคริสต์ทศวรรษ 1930 จนถึงทศวรรษ 1950 จึงเรียกว่า "ยุคทองของเคมีสเตอรอยด์"[170] และเกิดผลงานมากมายในช่วงนี้ งานวิจัยในช่วงนี้พิสูจน์ว่า สารประกอบที่สังเคราะห์ขึ้นได้ใหม่นี้ (เทสโทสเตอโรน) หรือกลุ่มสารประกอบ (เพราะมีสารอนุพันธ์มากมายที่พัฒนาขึ้นในช่วงคริสต์ทศวรรษ 1940-1960) มีฤทธิ์แรงในการสร้างกล้ามเนื้อ ความแข็งแรง และความรู้สึกอยู่เป็นสุข[171]

ดูเพิ่ม[แก้]

เคมี
ยา

เชิงอรรถและอ้างอิง[แก้]

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Melmed, Shlomo; Polonsky, Kenneth S.; Larsen, P. Reed; Kronenberg, Henry M. (2015-11-30). Williams Textbook of Endocrinology. Elsevier Health Sciences. pp. 711-. ISBN 978-0-323-29738-7.
  2. 2.0 2.1 2.2 Mooradian, AD; Morley, JE; Korenman, SG (1987-02). "Biological actions of androgens". Endocrine Reviews. 8 (1): 1–28. doi:10.1210/edrv-8-1-1. PMID 3549275. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  3. Bassil, N; Alkaade, S; Morley, JE (2009-06). "The benefits and risks of testosterone replacement therapy: a review". Therapeutics and Clinical Risk Management. 5 (3): 427–48. PMC 2701485. PMID 19707253. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  4. Tuck, SP; Francis, RM (2009). "Testosterone, bone and osteoporosis". Frontiers of Hormone Research. Frontiers of Hormone Research. 37: 123–32. doi:10.1159/000176049. ISBN 978-3-8055-8622-1. PMID 19011293.CS1 maint: uses authors parameter (link)
  5. 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 "Testosterone". Drugs.com. American Society of Health-System Pharmacists. 2015-12-04. สืบค้นเมื่อ 2016-09-03.
  6. 6.0 6.1 Luetjens, C. Marc; Weinbauer, Gerhard F. (2012). "Chapter 2: Testosterone: Biosynthesis, transport, metabolism and (non-genomic) actions". ใน Nieschlag, Eberhard; Behre, Hermann M.; Nieschlag, Susan (บ.ก.). Testosterone: Action, Deficiency, Substitution (4th ed.). Cambridge: Cambridge University Press. pp. 15–32. ISBN 978-1-107-01290-5.
  7. Torjesen, PA; Sandnes, L (2004-03). "Serum testosterone in women as measured by an automated immunoassay and a RIA". Clinical Chemistry. 50 (3): 678, author reply 678-9. doi:10.1373/clinchem.2003.027565. PMID 14981046. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  8. Southren, AL; Gordon, GG; Tochimoto, S; Pinzon, G; Lane, DR; Stypulkowski, W (1967-05). "Mean plasma concentration, metabolic clearance and basal plasma production rates of testosterone in normal young men and women using a constant infusion procedure: effect of time of day and plasma concentration on the metabolic clearance rate of testosterone". The Journal of Clinical Endocrinology and Metabolism. 27 (5): 686–94. doi:10.1210/jcem-27-5-686. PMID 6025472. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  9. Southren, AL; Tochimoto, S; Carmody, NC; Isurugi, K (1965-11). "Plasma production rates of testosterone in normal adult men and women and in patients with the syndrome of feminizing testes". The Journal of Clinical Endocrinology and Metabolism. 25 (11): 1441–50. doi:10.1210/jcem-25-11-1441. PMID 5843701. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  10. Dabbs, M; Dabbs, JM (2000). Heroes, rogues, and lovers: testosterone and behavior. New York: McGraw-Hill. ISBN 0-07-135739-4.CS1 maint: uses authors parameter (link)
  11. Sheffield-Moore, M (2000). "Androgens and the control of skeletal muscle protein synthesis". Annals of Medicine. 32 (3): 181–6. doi:10.3109/07853890008998825. PMID 10821325.CS1 maint: uses authors parameter (link)
  12. Handelsman, David J (2013-01). "Androgen Physiology, Pharmacology and Abuse". Endotext [Internet]. WWW.ENDOTEXT.ORG. MDText.com, Inc. Check date values in: |date= (help)
  13. 13.0 13.1 Swaab, DF; Garcia-Falgueras, A (2009). "Sexual differentiation of the human brain in relation to gender identity and sexual orientation". Functional Neurology. 24 (1): 17–28. PMID 19403051.CS1 maint: uses authors parameter (link)
  14. Browne, KR (2002). Biology at work: rethinking sexual equality. New Brunswick, NJ: Rutgers University Press. p. 112. ISBN 0-8135-3053-9.CS1 maint: uses authors parameter (link)
  15. Forest, MG; Cathiard, AM; Bertrand, JA (1973-07). "Evidence of testicular activity in early infancy". The Journal of Clinical Endocrinology and Metabolism. 37 (1): 148–51. doi:10.1210/jcem-37-1-148. PMID 4715291. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  16. Corbier, P; Edwards, DA; Roffi, J (1992). "The neonatal testosterone surge: a comparative study". Archives Internationales de Physiologie, de Biochimie et de Biophysique. 100 (2): 127–31. doi:10.3109/13813459209035274. PMID 1379488.CS1 maint: uses authors parameter (link)
  17. Dakin, CL; Wilson, CA; Kalló, I; Coen, CW; Davies, DC (2008-05). "Neonatal stimulation of 5-HT(2) receptors reduces androgen receptor expression in the rat anteroventral periventricular nucleus and sexually dimorphic preoptic area". The European Journal of Neuroscience. 27 (9): 2473–80. doi:10.1111/j.1460-9568.2008.06216.x. PMID 18445234. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  18. Kalat, JW (2009). "Reproductive behaviors". Biological psychology. Belmont, Calif: Wadsworth, Cengage Learning. p. 321. ISBN 0-495-60300-7.CS1 maint: uses authors parameter (link)
  19. 19.0 19.1 Pinyerd, B; Zipf, WB (2005). "Puberty-timing is everything!". Journal of Pediatric Nursing. 20 (2): 75–82. doi:10.1016/j.pedn.2004.12.011. PMID 15815567.CS1 maint: uses authors parameter (link)
  20. Ganong (2012). Ganong's Review of Medical Physiology (24 ed.). TATA McGRAW Hill. pp. 423–25. ISBN 978-1-25-902753-6.
  21. Raggatt, LJ; Partridge, NC (2010). "Cellular and molecular mechanisms of bone remodeling". The Journal of Biological Chemistry. 285 (33): 25103–8. doi:10.1074/jbc.R109.041087. PMC 2919071. PMID 20501658.CS1 maint: uses authors parameter (link)
  22. Kelsey, TW; Li, LQ; Mitchell, RT; Whelan, A; Anderson, RA; Wallace, WH (2014-10-08). "A validated age-related normative model for male total testosterone shows increasing variance but no decline after age 40 years". PloS One. 9 (10): e109346. Bibcode:2014PLoSO...9j9346K. doi:10.1371/journal.pone.0109346. PMC 4190174. PMID 25295520.CS1 maint: uses authors parameter (link)
  23. Mehta, PH; Jones, AC; Josephs, RA (2008-06). "The social endocrinology of dominance: basal testosterone predicts cortisol changes and behavior following victory and defeat" (PDF). Journal of Personality and Social Psychology. 94 (6): 1078–93. doi:10.1037/0022-3514.94.6.1078. PMID 18505319. คลังข้อมูลเก่า เก็บจาก แหล่งเดิม (PDF) เมื่อ 2009-04-19. สืบค้นเมื่อ 2017-02-22. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  24. Ajayi, AA; Halushka, PV (2005-05). "Castration reduces platelet thromboxane A2 receptor density and aggregability". Qjm. 98 (5): 349–56. doi:10.1093/qjmed/hci054. PMID 15820970. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  25. Ajayi, AA; Mathur, R; Halushka, PV (1995-06). "Testosterone increases human platelet thromboxane A2 receptor density and aggregation responses". Circulation. 91 (11): 2742–7. doi:10.1161/01.CIR.91.11.2742. PMID 7758179. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  26. Morgentaler, A; Schulman, C (2009). "Testosterone and prostate safety". Frontiers of Hormone Research. Frontiers of Hormone Research. 37: 197–203. doi:10.1159/000176054. ISBN 978-3-8055-8622-1. PMID 19011298.CS1 maint: uses authors parameter (link)
  27. Rhoden, EL; Averbeck, MA; Teloken, PE (2008-09). "Androgen replacement in men undergoing treatment for prostate cancer". The Journal of Sexual Medicine. 5 (9): 2202–08. doi:10.1111/j.1743-6109.2008.00925.x. PMID 18638000. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  28. Morgentaler, A; Traish, AM (2009-02). "Shifting the paradigm of testosterone and prostate cancer: the saturation model and the limits of androgen-dependent growth". European Urology. 55 (2): 310–20. doi:10.1016/j.eururo.2008.09.024. PMID 18838208. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  29. Haddad, RM; Kennedy, CC; Caples, SM; Tracz, MJ; Boloña, ER; Sideras, K; Uraga, MV; Erwin, PJ; Montori, VM (2007-01). "Testosterone and cardiovascular risk in men: a systematic review and meta-analysis of randomized placebo-controlled trials". Mayo Clinic Proceedings. 82 (1): 29–39. doi:10.4065/82.1.29. PMID 17285783. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  30. Jones, TH; Saad, F (2009-12). "The effects of testosterone on risk factors for, and the mediators of, the atherosclerotic process". Atherosclerosis. 207 (2): 318–27. doi:10.1016/j.atherosclerosis.2009.04.016. PMID 19464009. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  31. Stanworth, RD; Jones, TH (2008). "Testosterone for the aging male; current evidence and recommended practice". Clinical Interventions in Aging. 3 (1): 25–44. PMC 2544367. PMID 18488876.CS1 maint: uses authors parameter (link)
  32. Van Anders, SM; Watson, NV (2006). "Menstrual cycle irregularities are associated with testosterone levels in healthy premenopausal women". American Journal of Human Biology. 18 (6): 841–44. doi:10.1002/ajhb.20555. PMID 17039468.CS1 maint: uses authors parameter (link)
  33. 33.0 33.1 33.2 Marazziti, D; Canale, D (2004-08). "Hormonal changes when falling in love". Psychoneuroendocrinology. 29 (7): 931–36. doi:10.1016/j.psyneuen.2003.08.006. PMID 15177709. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  34. Fox, CA; Ismail, AA; Love, DN; Kirkham, KE; Loraine, JA (1972-01). "Studies on the relationship between plasma testosterone levels and human sexual activity". The Journal of Endocrinology. 52 (1): 51–8. doi:10.1677/joe.0.0520051. PMID 5061159. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  35. van Anders, SM; Dunn, EJ (2009-08). "Are gonadal steroids linked with orgasm perceptions and sexual assertiveness in women and men?". Hormones and Behavior. 56 (2): 206–13. doi:10.1016/j.yhbeh.2009.04.007. PMID 19409392. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  36. Exton, MS; Bindert, A; Krüger, T; Scheller, F; Hartmann, U; Schedlowski, M (1999). "Cardiovascular and endocrine alterations after masturbation-induced orgasm in women". Psychosomatic Medicine. 61 (3): 280–89. doi:10.1097/00006842-199905000-00005. PMID 10367606.CS1 maint: uses authors parameter (link)
  37. Purvis, K; Landgren, BM; Cekan, Z; Diczfalusy, E (1976-09). "Endocrine effects of masturbation in men". The Journal of Endocrinology. 70 (3): 439–44. doi:10.1677/joe.0.0700439. PMID 135817. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  38. Harding, SM; Velotta, JP (2011-05). "Comparing the relative amount of testosterone required to restore sexual arousal, motivation, and performance in male rats". Hormones and Behavior. 59 (5): 666–73. doi:10.1016/j.yhbeh.2010.09.009. PMID 20920505. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  39. James, PJ; Nyby, JG; Saviolakis, GA (2006-09). "Sexually stimulated testosterone release in male mice (Mus musculus) : roles of genotype and sexual arousal". Hormones and Behavior. 50 (3): 424–31. doi:10.1016/j.yhbeh.2006.05.004. PMID 16828762. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  40. 40.0 40.1 Wallen, K (2001-09). "Sex and context: hormones and primate sexual motivation". Hormones and Behavior. 40 (2): 339–57. doi:10.1006/hbeh.2001.1696. PMID 11534996. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  41. Hart, BL (1983-12). "Role of testosterone secretion and penile reflexes in sexual behavior and sperm competition in male rats: a theoretical contribution". Physiology & Behavior. 31 (6): 823–27. doi:10.1016/0031-9384(83)90279-2. PMID 6665072. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  42. Kraemer, HC; Becker, HB; Brodie, HK; Doering, CH; Moos, RH; Hamburg, DA (1976-03). "Orgasmic frequency and plasma testosterone levels in normal human males". Archives of Sexual Behavior. 5 (2): 125–32. doi:10.1007/BF01541869. PMID 1275688. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  43. Roney, JR; Mahler, SV; Maestripieri, D (2003). "Behavioral and hormonal responses of men to brief interactions with women". Evolution and Human Behavior. 24 (6): 365–75. doi:10.1016/S1090-5138(03)00053-9.CS1 maint: uses authors parameter (link)
  44. Pirke, KM; Kockott, G; Dittmar, F (1974-11). "Psychosexual stimulation and plasma testosterone in man". Archives of Sexual Behavior. 3 (6): 577–84. doi:10.1007/BF01541140. PMID 4429441. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  45. Hellhammer, DH; Hubert, W; Schürmeyer, T (1985). "Changes in saliva testosterone after psychological stimulation in men". Psychoneuroendocrinology. 10 (1): 77–81. doi:10.1016/0306-4530(85)90041-1. PMID 4001279.CS1 maint: uses authors parameter (link)
  46. Rowland, DL; Heiman, JR; Gladue, BA; Hatch, JP; Doering, CH; Weiler, SJ (1987). "Endocrine, psychological and genital response to sexual arousal in men". Psychoneuroendocrinology. 12 (2): 149–58. doi:10.1016/0306-4530(87)90045-X. PMID 3602262.CS1 maint: uses authors parameter (link)
  47. Miller, SL; Maner, JK (2010-02). "Scent of a woman: men's testosterone responses to olfactory ovulation cues". Psychological Science. 21 (2): 276–83. doi:10.1177/0956797609357733. PMID 20424057. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  48. Gangestead, SW; Thornhill, R; Garver-Apgar, CE (2005). "Adaptations to Ovulation: Implications for Sexual and Social Behavior". Current Directions in Psychological Science. 14 (6): 312–16. doi:10.1111/j.0963-7214.2005.00388.x.CS1 maint: uses authors parameter (link)
  49. Alexander, GM; Sherwin, BB (1991-09). "The association between testosterone, sexual arousal, and selective attention for erotic stimuli in men". Hormones and Behavior. 25 (3): 367–81. doi:10.1016/0018-506X(91)90008-6. PMID 1937428. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  50. Traish, AM; Kim, N; Min, K; Munarriz, R; Goldstein, I (2002-04). "Role of androgens in female genital sexual arousal: receptor expression, structure, and function". Fertility and Sterility. 77 Suppl 4: S11-8. doi:10.1016/s0015-0282(02)02978-3. PMID 12007897. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  51. van Anders, SM; Hamilton, LD; Schmidt, N; Watson, NV (2007-04). "Associations between testosterone secretion and sexual activity in women". Hormones and Behavior. 51 (4): 477–82. doi:10.1016/j.yhbeh.2007.01.003. PMID 17320881. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  52. Tuiten, A; Van Honk, J; Koppeschaar, H; Bernaards, C; Thijssen, J; Verbaten, R (2000-02). "Time course of effects of testosterone administration on sexual arousal in women". Archives of General Psychiatry. 57 (2): 149–53, discussion 155-6. doi:10.1001/archpsyc.57.2.149. PMID 10665617. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  53. Goldey, KL; van Anders, SM (2011-05). "Sexy thoughts: effects of sexual cognitions on testosterone, cortisol, and arousal in women". Hormones and Behavior. 59 (5): 754–64. doi:10.1016/j.yhbeh.2010.12.005. PMID 21185838. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  54. 54.0 54.1 Bolour, S; Braunstein, G (2005). "Testosterone therapy in women: a review". International Journal of Impotence Research. 17 (5): 399–408. doi:10.1038/sj.ijir.3901334. PMID 15889125.CS1 maint: uses authors parameter (link)
  55. 55.0 55.1 van Anders, SM; Watson, NV (2006-07). "Relationship status and testosterone in North American heterosexual and non-heterosexual men and women: cross-sectional and longitudinal data". Psychoneuroendocrinology. 31 (6): 715–23. doi:10.1016/j.psyneuen.2006.01.008. PMID 16621328. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  56. 56.0 56.1 56.2 Booth, A; Dabbs, JM (1993). "Testosterone and Men's Marriages". Social Forces. 72 (2): 463–77. doi:10.1093/sf/72.2.463.CS1 maint: uses authors parameter (link)
  57. Mazur, A; Michalek, J (1998). "Marriage, Divorce, and Male Testosterone". Social Forces. 77 (1): 315–30. doi:10.1093/sf/77.1.315.CS1 maint: uses authors parameter (link)
  58. Gray, PB; Chapman, JF; Burnham, TC; McIntyre, MH; Lipson, SF; Ellison, PT (2004-06). "Human male pair bonding and testosterone". Human Nature. 15 (2): 119–31. doi:10.1007/s12110-004-1016-6. PMID 26190409. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  59. Gray, PB; Campbell, BC; Marlowe, FW; Lipson, SF; Ellison, PT (2004-10). "Social variables predict between-subject but not day-to-day variation in the testosterone of US men". Psychoneuroendocrinology. 29 (9): 1153–62. doi:10.1016/j.psyneuen.2004.01.008. PMID 15219639. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  60. van Anders, SM; Watson, NV (2007-02). "Testosterone levels in women and men who are single, in long-distance relationships, or same-city relationships". Hormones and Behavior. 51 (2): 286–91. doi:10.1016/j.yhbeh.2006.11.005. PMID 17196592. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  61. Berg, SJ; Wynne-Edwards, KE (2001-06). "Changes in testosterone, cortisol, and estradiol levels in men becoming fathers". Mayo Clinic Proceedings. 76 (6): 582–92. doi:10.4065/76.6.582. PMID 11393496. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  62. "Parenting Skills Influenced by Testosterone Levels, Empathy". Psych Central.com. คลังข้อมูลเก่า เก็บจาก แหล่งเดิม เมื่อ 2015-10-31. สืบค้นเมื่อ 2015-11-02.
  63. 63.0 63.1 Sapienza, P; Zingales, L; Maestripieri, D (2009-09). "Gender differences in financial risk aversion and career choices are affected by testosterone". Proceedings of the National Academy of Sciences of the United States of America. 106 (36): 15268–73. Bibcode:2009PNAS..10615268S. doi:10.1073/pnas.0907352106. PMC 2741240. PMID 19706398. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  64. Apicella, CL; Dreber, A; Campbell, B; Gray, PB; Hoffman, M; Little, AC (2008-11). "Testosterone and financial risk preferences". Evolution and Human Behavior. 29 (6): 384–90. doi:10.1016/j.evolhumbehav.2008.07.001. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  65. 65.0 65.1 Wright, J; Ellis, L; Beaver, K (2009). Handbook of crime correlates. San Diego: Academic Press. pp. 208–10. ISBN 0-12-373612-9.CS1 maint: uses authors parameter (link)
  66. Goldman, D; Lappalainen, J; Ozaki, N. "Direct analysis of candidate genes in impulsive disorders". Cite journal requires |journal= (help)CS1 maint: uses authors parameter (link) อ้างอิงใน Bock, G; Goode, J, บ.ก. (1996). Genetics of Criminal and Antisocial Behaviour. Ciba Foundation Symposium 194. Chichester: John Wiley & Sons.CS1 maint: uses editors parameter (link)
  67. Coccaro, E (1996). "Neurotransmitter correlates of impulsive aggression in humans. In: Ferris C, Grisso T, eds. Understanding Aggressive Behaviour inn Children". Annals of the New York Academy of Sciences. 794: 82–89. Bibcode:1996NYASA.794...82C. doi:10.1111/j.1749-6632.1996.tb32511.x. PMID 8853594.CS1 maint: uses authors parameter (link)
  68. Finkelstein, JW; Susman, EJ; Chinchilli, VM; Kunselman, SJ; D'Arcangelo, MR; Schwab, J; Demers, LM; Liben, LS; Lookingbill, G; Kulin, HE (1997). "Estrogen or testosterone increases self-reported aggressive behaviors in hypogonadal adolescents". Journal of Clinical Endocrinology and Metabolism. 82 (8): 2433–38. doi:10.1210/jcem.82.8.4165. PMID 9253313.CS1 maint: uses authors parameter (link)
  69. Delville, Y; Mansour, KM; Ferris, CF (1996-07). "Testosterone facilitates aggression by modulating vasopressin receptors in the hypothalamus". Physiology & Behavior. 60 (1): 25–9. doi:10.1016/0031-9384(95)02246-5. PMID 8804638. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  70. Eisenegger, C; Naef, M; Snozzi, R; Heinrichs, M; Fehr, E (2010). "Prejudice and truth about the effect of testosterone on human bargaining behaviour". Nature. 463 (7279): 356–59. Bibcode:2010Natur.463..356E. doi:10.1038/nature08711. PMID 19997098.CS1 maint: uses authors parameter (link)
  71. van Honk, J; Montoya, ER; Bos, PA; van Vugt, M; Terburg, D (2012-05). "New evidence on testosterone and cooperation". Nature. 485 (7399): E4-5, discussion E5-6. Bibcode:2012Natur.485E...4V. doi:10.1038/nature11136. PMID 22622587. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  72. Zak, PJ; Kurzban, R; Ahmadi, S; Swerdloff, RS; Park, J; Efremidze, L; Redwine, K; Morgan, K; Matzner, W (2009-01-01). "Testosterone administration decreases generosity in the ultimatum game". PLoS ONE. 4 (12): e8330. Bibcode:2009PLoSO...4.8330Z. doi:10.1371/journal.pone.0008330. PMC 2789942. PMID 20016825.CS1 maint: uses authors parameter (link)
  73. McGinnis, MY (2004-12). "Anabolic androgenic steroids and aggression: studies using animal models". Annals of the New York Academy of Sciences. 1036: 399–415. Bibcode:2004NYASA1036..399M. doi:10.1196/annals.1330.024. PMID 15817752. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  74. von der, PB; Sarkola, T; Seppa, K; Eriksson, CJ (2002-09). "Testosterone, 5 alpha-dihydrotestosterone and cortisol in men with and without alcohol-related aggression". Journal of Studies on Alcohol. 63 (5): 518–26. doi:10.15288/jsa.2002.63.518. PMID 12380846. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  75. 75.0 75.1 75.2 75.3 75.4 Archer, J (2006). "Testosterone and human aggression: an evaluation of the challenge hypothesis" (PDF). Neuroscience and Biobehavioral Reviews. 30 (3): 319–45. doi:10.1016/j.neubiorev.2004.12.007. PMID 16483890. คลังข้อมูลเก่า เก็บจาก แหล่งเดิม (PDF) เมื่อ 2006-09-14. Unknown parameter |deadurl= ignored (help)CS1 maint: uses authors parameter (link)
  76. 76.0 76.1 Ellis, Lee; Hoskin, Anthony W. (2015). "The evolutionary neuroandrogenic theory of criminal behavior expanded". Aggression and Violent Behavior. 24: 61–74. doi:10.1016/j.avb.2015.05.002.
  77. Hoskin, Anthony W.; Ellis, Lee (2015). "Fetal Testosterone and Criminality: Test of Evolutionary Neuroandrogenic Theory". Criminology. 53 (1): 54–73. doi:10.1111/1745-9125.12056.
  78. Perciavalle, V; Di Corrado, D; Petralia, MC; Gurrisi, L; Massimino, S; Coco, M (2013-06). "The second-to-fourth digit ratio correlates with aggressive behavior in professional soccer players". Molecular Medicine Reports. 7 (6): 1733–38. doi:10.3892/mmr.2013.1426. PMC 3694562. PMID 23588344. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  79. Bailey, AA; Hurd, PL (2005-03). "Finger length ratio (2D:4D) correlates with physical aggression in men but not in women". Biological Psychology. 68 (3): 215–22. doi:10.1016/j.biopsycho.2004.05.001. PMID 15620791. Unknown parameter |laysummary= ignored (help); Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  80. Benderlioglu, Z; Nelson, RJ (2004-12). "Digit length ratios predict reactive aggression in women, but not in men". Hormones and Behavior. 46 (5): 558–64. doi:10.1016/j.yhbeh.2004.06.004. PMID 15555497. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  81. Liu, J; Portnoy, J; Raine, A (2012-08). "Association between a marker for prenatal testosterone exposure and externalizing behavior problems in children". Development and Psychopathology. 24 (3): 771–82. doi:10.1017/S0954579412000363. PMC 4247331. PMID 22781854. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  82. Butovskaya, M; Burkova, V; Karelin, D; Fink, B (2015-10-01). "Digit ratio (2D:4D), aggression, and dominance in the Hadza and the Datoga of Tanzania". American Journal of Human Biology. 27 (5): 620–27. doi:10.1002/ajhb.22718. PMID 25824265.CS1 maint: uses authors parameter (link)
  83. Joyce, CW; Kelly, JC; Chan, JC; Colgan, G; O'Briain, D; JP, Mc Cabe; Curtin, W (2013-11). "Second to fourth digit ratio confirms aggressive tendencies in patients with boxers fractures". Injury. 44 (11): 1636–39. doi:10.1016/j.injury.2013.07.018. PMID 23972912. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  84. Carré, JM; Olmstead, NA (2015-02). "Social neuroendocrinology of human aggression: examining the role of competition-induced testosterone dynamics" (PDF). Neuroscience. 286: 171–86. doi:10.1016/j.neuroscience.2014.11.029. PMID 25463514. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  85. Klinesmith, J; Kasser, T; McAndrew, FT (2006-07). "Guns, testosterone, and aggression: an experimental test of a mediational hypothesis". Psychological Science. 17 (7): 568–71. doi:10.1111/j.1467-9280.2006.01745.x. PMID 16866740. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  86. Mcandrew, Francis T (2009). "The Interacting Roles of Testosterone and Challenges to Status in Human Male Aggression" (PDF). Aggressive and Violent Behavior. 14 (5): 330–335. doi:10.1016/j.avb.2009.04.006.
  87. Batrinos, ML (2012-01-01). "Testosterone and aggressive behavior in man". International Journal of Endocrinology and Metabolism. 10 (3): 563–68. doi:10.5812/ijem.3661. PMC 3693622. PMID 23843821.CS1 maint: uses authors parameter (link)
  88. Weierstall, R; Moran, J; Giebel, G; Elbert, T (2014-05-01). "Testosterone reactivity and identification with a perpetrator or a victim in a story are associated with attraction to violence-related cues". International Journal of Law and Psychiatry. 37 (3): 304–12. doi:10.1016/j.ijlp.2013.11.016. PMID 24367977.CS1 maint: uses authors parameter (link)
  89. Nguyen, TV; McCracken, JT; Albaugh, MD; Botteron, KN; Hudziak, JJ; Ducharme, S (2016-01). "A testosterone-related structural brain phenotype predicts aggressive behavior from childhood to adulthood". Psychoneuroendocrinology. 63: 109–18. doi:10.1016/j.psyneuen.2015.09.021. PMC 4695305. PMID 26431805. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  90. Soma, KK; Scotti, MA; Newman, AE; Charlier, TD; Demas, GE (2008-10). "Novel mechanisms for neuroendocrine regulation of aggression". Frontiers in Neuroendocrinology. 29 (4): 476–89. doi:10.1016/j.yfrne.2007.12.003. PMID 18280561. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  91. Soma, KK; Sullivan, KA; Tramontin, AD; Saldanha, CJ; Schlinger, BA; Wingfield, JC (2000). "Acute and chronic effects of an aromatase inhibitor on territorial aggression in breeding and nonbreeding male song sparrows". Journal of Comparative Physiology A. 186 (7–8): 759–69. doi:10.1007/s003590000129. PMID 11016791.CS1 maint: uses authors parameter (link)
  92. McGinnis, MY; Lumia, AR; Breuer, ME; Possidente, B (2002-02). "Physical provocation potentiates aggression in male rats receiving anabolic androgenic steroids". Hormones and Behavior. 41 (1): 101–10. doi:10.1006/hbeh.2001.1742. PMID 11863388. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  93. Wilson, JD (2001-09). "Androgens, androgen receptors, and male gender role behavior". Hormones and Behavior. 40 (2): 358–66. doi:10.1006/hbeh.2001.1684. PMID 11534997. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  94. Cosgrove, KP; Mazure, CM; Staley, JK (2007-10). "Evolving knowledge of sex differences in brain structure, function, and chemistry". Biological Psychiatry. 62 (8): 847–55. doi:10.1016/j.biopsych.2007.03.001. PMC 2711771. PMID 17544382. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  95. Marner, L; Nyengaard, JR; Tang, Y; Pakkenberg, B (2003-07). "Marked loss of myelinated nerve fibers in the human brain with age". The Journal of Comparative Neurology. 462 (2): 144–52. doi:10.1002/cne.10714. PMID 12794739. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  96. Bhasin, S; Storer, TW; Berman, N; Callegari, C; Clevenger, B; Phillips, J; Bunnell, TJ; Tricker, R; Shirazi, A; Casaburi, R (1996-07). "The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men". The New England Journal of Medicine. 335 (1): 1–7. doi:10.1056/NEJM199607043350101. PMID 8637535. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  97. "Testosterone Affects Some Women's Career Choices". NPR. 2009-08-28.
  98. Pike, CJ; Rosario, ER; Nguyen, TV (2006-04). "Androgens, aging, and Alzheimer's disease". Endocrine. 29 (2): 233–41. doi:10.1385/ENDO:29:2:233. PMID 16785599. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  99. Rosario, ER; Chang, L; Stanczyk, FZ; Pike, CJ (2004-09). "Age-related testosterone depletion and the development of Alzheimer disease". JAMA. 292 (12): 1431–32. doi:10.1001/jama.292.12.1431-b. PMID 15383512. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  100. Hogervorst, E; Bandelow, S; Combrinck, M; Smith, AD (2004). "Low free testosterone is an independent risk factor for Alzheimer's disease". Experimental Gerontology. 39 (11–12): 1633–39. doi:10.1016/j.exger.2004.06.019. PMID 15582279.CS1 maint: uses authors parameter (link)
  101. Moffat, SD; Zonderman, AB; Metter, EJ; Kawas, C; Blackman, MR; Harman, SM; Resnick, SM (2004-01). "Free testosterone and risk for Alzheimer disease in older men". Neurology. 62 (2): 188–93. doi:10.1212/WNL.62.2.188. PMID 14745052. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  102. Moffat, SD; Hampson, E (1996-04). "A curvilinear relationship between testosterone and spatial cognition in humans: possible influence of hand preference". Psychoneuroendocrinology. 21 (3): 323–37. doi:10.1016/0306-4530(95)00051-8. PMID 8817730. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  103. Häggström, Mikael; Richfield, David (2014). "Diagram of the pathways of human steroidogenesis". WikiJournal of Medicine. 1 (1). doi:10.15347/wjm/2014.005. ISSN 2002-4436.
  104. Waterman, MR; Keeney, DS (1992). "Genes involved in androgen biosynthesis and the male phenotype". Hormone Research. 38 (5–6): 217–21. doi:10.1159/000182546. PMID 1307739.CS1 maint: uses authors parameter (link)
  105. Zuber, MX; Simpson, ER; Waterman, MR (1986-12). "Expression of bovine 17 alpha-hydroxylase cytochrome P-450 cDNA in nonsteroidogenic (COS 1) cells". Science. 234 (4781): 1258–61. Bibcode:1986Sci...234.1258Z. doi:10.1126/science.3535074. PMID 3535074. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  106. Zouboulis, CC; Degitz, K (2004). "Androgen action on human skin -- from basic research to clinical significance". Experimental Dermatology. 13 Suppl 4 (s4): 5–10. doi:10.1111/j.1600-0625.2004.00255.x. PMID 15507105.CS1 maint: uses authors parameter (link)
  107. Brooks, RV (1975-11). "Androgens". Clinics in Endocrinology and Metabolism. 4 (3): 503–20. doi:10.1016/S0300-595X(75)80045-4. PMID 58744. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  108. Payne, AH; O'Shaughnessy, P (1996). "Structure, function, and regulation of steroidogenic enzymes in the Leydig cell". ใน Payne, AH; Hardy, MP; Russell, LD (บ.ก.). Leydig Cell. Vienna [Il]: Cache River Press. pp. 260–85. ISBN 0-9627422-7-9.CS1 maint: uses authors parameter (link) CS1 maint: uses editors parameter (link)
  109. Swerdloff, RS; Wang, C; Bhasin, S (1992-04). "Developments in the control of testicular function". Baillière's Clinical Endocrinology and Metabolism. 6 (2): 451–83. doi:10.1016/S0950-351X(05)80158-2. PMID 1377467. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  110. Liverman, Catharyn T.; Blazer, Dan G.; Institute of Medicine (US) Committee on Assessing the Need for Clinical Trials of Testosterone Replacement Therapy (2004-01-01). "Introduction". Testosterone and Aging: Clinical Research Directions. National Academies Press (US). doi:10.17226/10852. ISBN 978-0-309-09063-6 – โดยทาง www.ncbi.nlm.nih.gov.
  111. Huhtaniemi, I (2014). "Late-onset hypogonadism: current concepts and controversies of pathogenesis, diagnosis and treatment". Asian Journal of Andrology. 16 (2): 192–202. doi:10.4103/1008-682X.122336. PMC 3955328. PMID 24407185.CS1 maint: uses authors parameter (link)
  112. Huhtaniemi, IT (2014). "Andropause--lessons from the European Male Ageing Study". Annales D'endocrinologie. 75 (2): 128–31. doi:10.1016/j.ando.2014.03.005. PMID 24793989.CS1 maint: uses authors parameter (link)
  113. Vingren, JL; Kraemer, WJ; Ratamess, NA; Anderson, JM; Volek, JS; Maresh, CM (2010). "Testosterone physiology in resistance exercise and training: the up-stream regulatory elements". Sports Medicine (Auckland, N.Z.). 40 (12): 1037–53. doi:10.2165/11536910-000000000-00000. PMID 21058750.CS1 maint: uses authors parameter (link)
  114. Hulmi, JJ; Ahtiainen, JP; Selänne, H; Volek, JS; Häkkinen, K; Kovanen, V; Mero, AA (2008-05). "Androgen receptors and testosterone in men--effects of protein ingestion, resistance exercise and fiber type". The Journal of Steroid Biochemistry and Molecular Biology. 110 (1–2): 130–37. doi:10.1016/j.jsbmb.2008.03.030. PMID 18455389. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  115. Hackney, AC; Moore, AW; Brownlee, KK (2005). "Testosterone and endurance exercise: development of the "exercise-hypogonadal male condition"". Acta Physiologica Hungarica. 92 (2): 121–37. doi:10.1556/APhysiol.92.2005.2.3. PMID 16268050.CS1 maint: uses authors parameter (link)
  116. Livera, G; Rouiller-Fabre, V; Pairault, C; Levacher, C; Habert, R (2002-08). "Regulation and perturbation of testicular functions by vitamin A". Reproduction. 124 (2): 173–80. doi:10.1530/rep.0.1240173. PMID 12141930. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  117. Pilz, S; Frisch, S; Koertke, H; Kuhn, J; Dreier, J; Obermayer-Pietsch, B; Wehr, E; Zittermann, A (2011-03). "Effect of vitamin D supplementation on testosterone levels in men". Hormone and Metabolic Research = Hormon- Und Stoffwechselforschung = Hormones et Métabolisme. 43 (3): 223–25. doi:10.1055/s-0030-1269854. PMID 21154195. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  118. Prasad, AS; Mantzoros, CS; Beck, FW; Hess, JW; Brewer, GJ (1996-05). "Zinc status and serum testosterone levels of healthy adults". Nutrition. 12 (5): 344–48. doi:10.1016/S0899-9007(96)80058-X. PMID 8875519. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  119. Koehler, K; Parr, MK; Geyer, H; Mester, J; Schänzer, W (2009-01). "Serum testosterone and urinary excretion of steroid hormone metabolites after administration of a high-dose zinc supplement". European Journal of Clinical Nutrition. 63 (1): 65–70. doi:10.1038/sj.ejcn.1602899. PMID 17882141. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  120. Håkonsen, LB; Thulstrup, AM; Aggerholm, AS; Olsen, J; Bonde, JP; Andersen, CY; Bungum, M; Ernst, EH; Hansen, ML; Ernst, EH; Ramlau-Hansen, CH (2011). "Does weight loss improve semen quality and reproductive hormones? Results from a cohort of severely obese men". Reproductive Health. 8 (1): 24. doi:10.1186/1742-4755-8-24. PMC 3177768. PMID 21849026.CS1 maint: uses authors parameter (link)
  121. MacDonald, AA; Herbison, GP; Showell, M; Farquhar, CM (2010). "The impact of body mass index on semen parameters and reproductive hormones in human males: a systematic review with meta-analysis". Human Reproduction Update. 16 (3): 293–311. doi:10.1093/humupd/dmp047. PMID 19889752.CS1 maint: uses authors parameter (link)
  122. Andersen, ML; Tufik, S (2008-10). "The effects of testosterone on sleep and sleep-disordered breathing in men: its bidirectional interaction with erectile function" (PDF). Sleep Medicine Reviews. 12 (5): 365–79. doi:10.1016/j.smrv.2007.12.003. PMID 18519168. คลังข้อมูลเก่า เก็บจาก แหล่งเดิม (PDF) เมื่อ 2009-03-27. สืบค้นเมื่อ 2017-02-22. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  123. Schultheiss, OC; Campbell, KL; McClelland, DC (1999-12). "Implicit power motivation moderates men's testosterone responses to imagined and real dominance success". Hormones and Behavior. 36 (3): 234–41. doi:10.1006/hbeh.1999.1542. PMID 10603287. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  124. Akdoğan, M; Tamer, MN; Cüre, E; Cüre, MC; Köroğlu, BK; Delibaş, N (2007-05). "Effect of spearmint (Mentha spicata Labiatae) teas on androgen levels in women with hirsutism". Phytotherapy Research. 21 (5): 444–47. doi:10.1002/ptr.2074. PMID 17310494. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  125. Kumar, V; Kural, MR; Pereira, BM; Roy, P (2008-12). "Spearmint induced hypothalamic oxidative stress and testicular anti-androgenicity in male rats - altered levels of gene expression, enzymes and hormones". Food and Chemical Toxicology. 46 (12): 3563–70. doi:10.1016/j.fct.2008.08.027. PMID 18804513. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  126. Grant, P (2010-02). "Spearmint herbal tea has significant anti-androgen effects in polycystic ovarian syndrome. A randomized controlled trial". Phytotherapy Research. 24 (2): 186–88. doi:10.1002/ptr.2900. PMID 19585478. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  127. Armanini, D; Fiore, C; Mattarello, MJ; Bielenberg, J; Palermo, M (2002-09). "History of the endocrine effects of licorice". Experimental and Clinical Endocrinology & Diabetes. 110 (6): 257–61. doi:10.1055/s-2002-34587. PMID 12373628. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  128. Cumming, DC; Wall, SR (1985-11). "Non-sex hormone-binding globulin-bound testosterone as a marker for hyperandrogenism". The Journal of Clinical Endocrinology and Metabolism. 61 (5): 873–6. doi:10.1210/jcem-61-5-873. PMID 4044776. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  129. 129.0 129.1 129.2 129.3 129.4 129.5 129.6 129.7 129.8 129.9 Becker, Kenneth L. (2001). Principles and Practice of Endocrinology and Metabolism. Lippincott Williams & Wilkins. pp. 1116, 1119, 1183. ISBN 978-0-7817-1750-2.
  130. 130.0 130.1 130.2 130.3 Wecker, Lynn; Watts, Stephanie; Faingold, Carl; Dunaway, George; Crespo, Lynn (2009-04-01). Brody's Human Pharmacology. Elsevier Health Sciences. pp. 468–469. ISBN 0-323-07575-4.
  131. Penning, TM (2010). "New frontiers in androgen biosynthesis and metabolism". Curr Opin Endocrinol Diabetes Obes. 17 (3): 233–9. doi:10.1097/MED.0b013e3283381a31. PMC 3206266. PMID 20186052.CS1 maint: uses authors parameter (link)
  132. Horsky, J.; Presl, J. (2012-12-06). Ovarian Function and its Disorders: Diagnosis and Therapy. Springer Science & Business Media. pp. 107-. ISBN 978-94-009-8195-9.
  133. 133.0 133.1 133.2 133.3 133.4 Zhou, Shufeng (2016-04-06). Cytochrome P450 2D6: Structure, Function, Regulation and Polymorphism. CRC Press. pp. 242-. ISBN 978-1-4665-9788-4.
  134. Trager, L (1977). Steroidhormone: Biosynthese, Stoffwechsel, Wirkung (ภาษาเยอรมัน). Springer-Verlag. p. 349. ISBN 0-387-08012-0.CS1 maint: uses authors parameter (link)
  135. Randall, VA (1994-04). "Role of 5 alpha-reductase in health and disease". Baillière's Clinical Endocrinology and Metabolism. 8 (2): 405–31. doi:10.1016/S0950-351X(05)80259-9. PMID 8092979. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  136. Meinhardt, U; Mullis, PE (2002-08). "The essential role of the aromatase/p450arom". Seminars in Reproductive Medicine. 20 (3): 277–84. doi:10.1055/s-2002-35374. PMID 12428207. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  137. Noakes, David E. (2009-04-23). Arthur's Veterinary Reproduction and Obstetrics. Elsevier Health Sciences UK. pp. 695-. ISBN 978-0-7020-3990-4.
  138. Nieschlag, E; Behre, HM (2004-04-01). Testosterone: Action, Deficiency, Substitution. Cambridge University Press. pp. 626-. ISBN 978-1-139-45221-2.CS1 maint: uses authors parameter (link)
  139. Parl, Fritz F. (2000). Estrogens, Estrogen Receptor and Breast Cancer. IOS Press. pp. 25-. ISBN 978-0-9673355-4-4.
  140. Norman, Anthony W.; Henry, Helen L. (2014-07-30). Hormones. Academic Press. pp. 261-. ISBN 978-0-08-091906-5.
  141. Mozayani, Ashram; Raymon, Lionel (2011-09-18). Handbook of Drug Interactions: A Clinical and Forensic Guide. Springer Science & Business Media. pp. 656-. ISBN 978-1-61779-222-9.
  142. Sundaram, K; Kumar, N; Monder, C; Bardin, CW (1995). "Different patterns of metabolism determine the relative anabolic activity of 19-norandrogens". J. Steroid Biochem. Mol. Biol. 53 (1–6): 253–7. doi:10.1016/0960-0760(95)00056-6. PMID 7626464.CS1 maint: uses authors parameter (link)
  143. Hiipakka, RA; Liao, S (1998-10). "Molecular mechanism of androgen action". Trends in Endocrinology and Metabolism. 9 (8): 317–24. doi:10.1016/S1043-2760(98)00081-2. PMID 18406296. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  144. McPhaul, MJ; Young, M (2001-09). "Complexities of androgen action". Journal of the American Academy of Dermatology. 45 (3 Suppl): S87-94. doi:10.1067/mjd.2001.117429. PMID 11511858. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  145. Bennett, NC; Gardiner, RA; Hooper, JD; Johnson, DW; Gobe, GC (2010). "Molecular cell biology of androgen receptor signalling". Int. J. Biochem. Cell Biol. 42 (6): 813–27. doi:10.1016/j.biocel.2009.11.013. PMID 19931639.CS1 maint: uses authors parameter (link)
  146. Wang, C; Liu, Y; Cao, JM (2014). "G protein-coupled receptors: extranuclear mediators for the non-genomic actions of steroids". Int J Mol Sci. 15 (9): 15412–25. doi:10.3390/ijms150915412. PMC 4200746. PMID 25257522.CS1 maint: uses authors parameter (link)
  147. Lang, F; Alevizopoulos, K; Stournaras, C (2013). "Targeting membrane androgen receptors in tumors". Expert Opin. Ther. Targets. 17 (8): 951–63. doi:10.1517/14728222.2013.806491. PMID 23746222.CS1 maint: uses authors parameter (link)
  148. Breiner, M; Romalo, G; Schweikert, HU (1986-08). "Inhibition of androgen receptor binding by natural and synthetic steroids in cultured human genital skin fibroblasts". Klinische Wochenschrift. 64 (16): 732–37. doi:10.1007/BF01734339. PMID 3762019. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  149. Kelly, MJ; Qiu, J; Rønnekleiv, OK (2005-01-01). "Estrogen signaling in the hypothalamus". Vitamins and Hormones. 71: 123–45. doi:10.1016/S0083-6729(05)71005-0. PMID 16112267.CS1 maint: uses authors parameter (link)
  150. McCarthy, MM (2008). "Estradiol and the developing brain". Physiological Reviews. 88 (1): 91–124. doi:10.1152/physrev.00010.2007. PMC 2754262. PMID 18195084.CS1 maint: uses authors parameter (link)
  151. Myers, JB; Meacham, RB (2003). "Androgen replacement therapy in the aging male". Reviews in Urology. 5 (4): 216–26. PMC 1508369. PMID 16985841.CS1 maint: uses authors parameter (link)
  152. Staff (2015-03-03). "Testosterone Products: Drug Safety Communication - FDA Cautions About Using Testosterone Products for Low Testosterone Due to Aging; Requires Labeling Change to Inform of Possible Increased Risk of Heart Attack And Stroke". FDA. สืบค้นเมื่อ 2015-03-05.
  153. "19th WHO Model List of Essential Medicines (April 2015)" (PDF). WHO. 2015-04. สืบค้นเมื่อ 2015-05-10. Check date values in: |date= (help)
  154. Hamilton, Richart (2015). Tarascon Pocket Pharmacopoeia 2015 Deluxe Lab-Coat Edition. Jones & Bartlett Learning. p. 197. ISBN 978-1-284-05756-0.
  155. Guerriero, G (2009). "Vertebrate sex steroid receptors: evolution, ligands, and neurodistribution". Annals of the New York Academy of Sciences. 1163: 154–68. doi:10.1111/j.1749-6632.2009.04460.x. PMID 19456336.CS1 maint: uses authors parameter (link)
  156. Bryan, MB; Scott, AP; Li, W (2008). "Sex steroids and their receptors in lampreys". Steroids. 73 (1): 1–12. doi:10.1016/j.steroids.2007.08.011. PMID 17931674.CS1 maint: uses authors parameter (link)
  157. Nelson, RF (2005). An introduction to behavioral endocrinology. Sunderland, Mass: Sinauer Associates. p. 143. ISBN 0-87893-617-3.CS1 maint: uses authors parameter (link)
  158. De Loof, A (2006-10). "Ecdysteroids: the overlooked sex steroids of insects? Males: the black box". Insect Science. 13 (5): 325–338. doi:10.1111/j.1744-7917.2006.00101.x. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  159. Mechoulam, R; Brueggemeier, RW; Denlinger, DL (1984-09). "Estrogens in insects". Journal Cellular and Molecular Life Sciences. 40 (9): 942–44. doi:10.1007/BF01946450. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  160. Berthold, AA (1849). "Transplantation der Hoden". Arch. Anat. Physiol. Wiss. (ภาษาเยอรมัน). 16: 42–6. Unknown parameter |trans_title= ignored (help)CS1 maint: uses authors parameter (link)
  161. Brown-Sequard, CE (1889). "The effects produced on man by subcutaneous injections of liquid obtained from the testicles of animals". Lancet. 2 (3438): 105–07. doi:10.1016/S0140-6736(00)64118-1.CS1 maint: uses authors parameter (link)
  162. Gallagher, TF; Koch, FC (1929-11). "The testicular hormone". J. Biol. Chem. 84 (2): 495–500. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  163. David, KG; Dingemanse, E; Freud, JL (1935-05). "Über krystallinisches mannliches Hormon aus Hoden (Testosteron) wirksamer als aus harn oder aus Cholesterin bereitetes Androsteron". Hoppe Seylers Z Physiol Chem (ภาษาเยอรมัน). 233 (5–6): 281–83. doi:10.1515/bchm2.1935.233.5-6.281. Unknown parameter |trans_title= ignored (help); Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  164. Butenandt, A; Hanisch, G (1935). "Umwandlung des Dehydroandrosterons in Androstendiol und Testosterone; ein Weg zur Darstellung des Testosterons aus Cholestrin". Hoppe Seylers Z Physiol Chem (ภาษาเยอรมัน). 237 (2): 89–97. doi:10.1515/bchm2.1935.237.1-3.89. Unknown parameter |trans_title= ignored (help)CS1 maint: uses authors parameter (link)
  165. 165.0 165.1 Freeman, ER; Bloom, DA; McGuire, EJ (2001-02). "A brief history of testosterone". The Journal of Urology. 165 (2): 371–73. doi:10.1097/00005392-200102000-00004. PMID 11176375. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  166. Butenandt, A; Hanisch, G (1935). "Uber die Umwandlung des Dehydroandrosterons in Androstenol-(17) -one-(3) (Testosterone) ; um Weg zur Darstellung des Testosterons auf Cholesterin (Vorlauf Mitteilung). [The conversion of dehydroandrosterone into androstenol-(17) -one-3 (testosterone) ; a method for the production of testosterone from cholesterol (preliminary communication)]". Chemische Berichte (ภาษาเยอรมัน). 68 (9): 1859–62. doi:10.1002/cber.19350680937.CS1 maint: uses authors parameter (link)
  167. Ruzicka, L; Wettstein, A (1935). "Uber die kristallinische Herstellung des Testikelhormons, Testosteron (Androsten-3-ol-17-ol) [The crystalline production of the testicle hormone, testosterone (Androsten-3-ol-17-ol)]". Helvetica Chimica Acta (ภาษาเยอรมัน). 18: 1264–75. doi:10.1002/hlca.193501801176.CS1 maint: uses authors parameter (link)
  168. Hoberman, JM; Yesalis, CE (1995-02). "The history of synthetic testosterone". Scientific American. 272 (2): 76–81. doi:10.1038/scientificamerican0295-76. PMID 7817189. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  169. Kenyon, AT; Knowlton, K; Sandiford, I; Koch, FC; Lotwin; G (1940-02). "A comparative study of the metabolic effects of testosterone propionate in normal men and women and in eunuchoidism". Endocrinology. 26 (1): 26–45. doi:10.1210/Endo-26-1-26. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  170. Schwarz, S; Onken, D; Schubert, A (1999-07). "The steroid story of Jenapharm: from the late 1940s to the early 1970s". Steroids. 64 (7): 439–45. doi:10.1016/S0039-128X(99)00003-3. PMID 10443899. Check date values in: |date= (help)CS1 maint: uses authors parameter (link)
  171. de Kruif, P (1945). The Male Hormone. New York: Harcourt, Brace.CS1 maint: uses authors parameter (link)

แหล่งข้อมูลอื่น[แก้]