ปัญญาประดิษฐ์

จากวิกิพีเดีย สารานุกรมเสรี
"AI" เปลี่ยนทางมาที่นี่ สำหรับความหมายอื่น ดูที่ AI (แก้ความกำกวม)
ปัญญาประดิษฐ์

ศัพท์ปัญญาประดิษฐ์

GOFAI
การค้นหาในปริภูมิสถานะ
การวางแผนอัตโนมัติ
การค้นหาเชิงการจัด
ระบบผู้เชี่ยวชาญ
การแทนความรู้
ระบบอิงความรู้
Connectionism
ข่ายงานประสาทเทียม
ชีวิตประดิษฐ์
ปัญญาประดิษฐ์แบบกระจาย
การเขียนโปรแกรมเชิงพันธุกรรม
ขั้นตอนวิธีเชิงพันธุกรรม
ปัญญากลุ่ม
Artificial beings
Bayesian methods
เครือข่ายแบบเบย์
การเรียนรู้ของเครื่อง
การรู้จำแบบ
ระบบฟัซซี
ตรรกศาสตร์คลุมเครือ
ฟัซซีอิเล็กทรอนิกส์
Philosophy
ปัญญาประดิษฐ์แบบเข้ม
สำนึกประดิษฐ์
การทดสอบทัวริง

ปัญญาประดิษฐ์ (Artificial Intelligence) หรือ เอไอ (AI) หมายถึงความฉลาดเทียมที่สร้างขึ้นให้กับสิ่งที่ไม่มีชีวิต ปัญญาประดิษฐ์เป็นสาขาหนึ่งในด้านวิทยาการคอมพิวเตอร์ และวิศวกรรมเป็นหลัก แต่ยังรวมถึงศาสตร์ในด้านอื่นๆอย่างจิตวิทยา ปรัชญา หรือชีววิทยา ซึ่งสาขาปัญญาประดิษฐ์เป็นการเรียนรู้เกี่ยวกับกระบวนการการคิด การกระทำ การให้เหตุผล การปรับตัว หรือการอนุมาน และการทำงานของสมอง แม้ว่าดังเดิมนั้นเป็นสาขาหลักในวิทยาการคอมพิวเตอร์ แต่แนวคิดหลายๆ อย่างในศาสตร์นี้ได้มาจากการปรับปรุงเพิ่มเติมจากศาสตร์อื่นๆ เช่น

อย่างไรก็ตาม เนื่องจากปัจจุบันวงการปัญญาประดิษฐ์ มีการพัฒนาส่วนใหญ่โดยนักวิทยาศาสตร์คอมพิวเตอร์ อีกทั้งวิชาปัญญาประดิษฐ์ ก็ต้องเรียนที่ภาควิชาคอมพิวเตอร์ของคณะวิทยาศาสตร์หรือคณะวิศวกรรมศาสตร์ เราจึงถือเอาง่าย ๆ ว่า ศาสตร์นี้เป็นสาขาของวิทยาการคอมพิวเตอร์นั่นเอง

หนังสืออ้างอิงที่ดีและทันสมัยที่สุดในปัจจุบัน คือของ Russell and Norvig, 2003[1] ผู้สนใจสามารถศึกษารายละเอียดเพิ่มเติมได้จากเล่มนี้

เนื้อหา

ประวัติ[แก้]

แนวคิดเรื่องเครื่องจักรที่คิดได้และสิ่งมีชีวิตเทียมนั้นมีมาตั้งแต่สมัยกรีกโบราณ เช่นหุ่นยนต์ทาลอสแห่งครีต อันเป็นหุ่นยนต์ทองแดงของเทพฮิฟีสตัส แหล่งอารยธรรมใหญ่ๆของโลกมักจะเชื่อเรื่องหุ่นยนต์ที่มีความคล้ายกับมนุษย์ เช่น ในอียิปต์และกรีซ ต่อมา ช่วงกลางศตวรรษที่ 19 และ 20 สิ่งมีชีวิตเทียมเริ่มปรากฏอย่างแพร่หลายในนิยายวิทยาศาสตร์ เช่น แฟรงเกนสไตน์ของแมรี เชลลีย์ หรือ R.U.R.ของกาเรล ชาเปก แนวคิดเหล่านี้ผ่านการอภิปรายมาอย่างแพร่หลาย โดยเฉพาะในแง่ของความหวัง ความกลัว หรือความกังวลด้านศีลธรรมเนื่องจากการมีอยู่ของปัญญาประดิษฐ์

กลไกหรือการให้เหตุผลอย่างมีแบบแผน ได้รับการพัฒนาขึ้นโดยนักปรัชญาและนักวิทยาศาสตร์มาตั้งแต่สมัยโบราณ การศึกษาด้านตรรกศาสตร์นำไปสู่การคิดค้นเครื่องคำนวณอิเล็กทรอนิกส์ดิจิตอลที่โปรแกรมได้โดยอาศัยหลักการทางคณิตศาสตร์ของแอลัน ทัวริงและคนอื่นๆ ทฤษฎีการคำนวณของทัวริงชี้ว่า เครื่องจักรที่รู้จักการสลับตัวเลขระหว่าง 0 กับ 1 สามารถเข้าใจนิรนัยทางคณิตศาสตร์ได้ หลังจากนั้น การค้นพบทางด้านประสาทวิทยา ทฤษฎีสารสนเทศ และไซเบอร์เนติกส์ รวมทั้งทฤษฎีการคำนวณของทัวริง ได้ทำให้นักวิทยาศาสตร์บางกลุ่มเริ่มสนใจพิจารณาความเป็นไปได้ของการสร้าง สมองอิเล็กทรอนิกส์ ขึ้นมาอย่างจริงจัง

สาขาปัญญาประดิษฐ์นั้นเริ่มก่อตั้งขึ้นในที่ประชุมวิชาการที่วิทยาลัยดาร์ตมัธ สหรัฐอเมริกาในช่วงหน้าร้อน ค.ศ. 1956[2] โดยผู้ร่วมในการประชุมครั้งนั้น ได้แก่ จอห์น แม็กคาร์ธีย์ มาร์วิน มินสกี อัลเลน นิวเวลล์ อาเธอร์ ซามูเอล และเฮอร์เบิร์ต ไซมอน ที่ได้กลายมาเป็นผู้นำทางสาขาปัญญาประดิษฐ์ในอีกหลายสิบปีต่อมา นักวิทยาศาสตร์และนักศึกษาของพวกเขาเหล่านี้เขียนโปรแกรมที่หลายคนทึ่ง ไม่ว่าจะเป็น คอมพิวเตอร์ที่สามารถเอาชนะคนเล่นหมากรุก แก้ไขปัญหาเกี่ยวกับคำด้วยพีชคณิต พิสูจน์ทฤษฎีทางตรรกวิทยา หรือแม้กระทั่งพูดภาษาอังกฤษได้ ผู้ก่อตั้งสาขาปัญญาประดิษฐ์กลุ่มนี้เชื่อมั่นในอนาคตของเทคโนโลยีใหม่นี้มาก โดยเฮอร์เบิร์ต ไซมอนคาดว่าจะมีเครื่องจักรที่สามารถทำงานทุกอย่างได้เหมือนมนุษย์ภายใน 20 ปีข้างหน้า และมาร์วิน มินสกีก็เห็นพ้องโดยการเขียนว่า "เพียงชั่วอายุคน ปัญหาของการสร้างความฉลาดเทียมจะถูกแก้ไขอย่างยั่งยืน"

อย่างไรก็ตาม นักวิทยาศาสตร์กลุ่มนี้กลับไม่ได้พิจารณาถึงความยากของปัญหาที่จะพบมากนัก ในปี ค.ศ. 1974 เซอร์ เจมส์ ไลท์ฮิลล์ ได้เขียนวิพากษ์วิจารณ์สาขาปัญญาประดิษฐ์ ประกอบกับมีแรงกดดันจากสภาคองเกรสของสหรัฐฯให้ไปให้เงินสนับสนุนโครงการมีผลผลิตออกมาเป็นรูปธรรมมากกว่า ดังนั้น รัฐบาลสหรัฐอเมริกาและสหราชอาณาจักรจึงได้ตัดงิบประมาณการวิจัยที่ไร้ทิศทางของสาขาปัญญาประดิษฐไป จนเป็นยุคที่เรียกว่า หน้าหนาวของปัญญาประดิษฐ์ (AI winter) กินเวลาหลายปี ซึ่งโครงการด้านปัญญาประดิษฐ์แต่ละโครงการนั้นหาเงินทุนสนับสนุนยากมาก

ในช่วงต้นทศวรรษที่ 1980 งานวิจัยด้านปัญญาประดิษฐ์ประสบความสำเร็จในเชิงพาณิชย์เป็นครั้งแรก ด้วยระบบที่ชื่อว่า ระบบผู้เชี่ยวชาญ อันเป็นระบบคอมพิวเตอร์ที่ช่วยในการหาคำตอบ อธิบายความไม่ชัดเจน ซึ่งปกตินั้นจะใช้ผู้เชี่ยวชาญในแต่ละสาขาตอบคำถามนั้น ในปี ค.ศ. 1985 ตลาดของปัญญาประดิษฐ์ทะยานขึ้นไปแตะระดับ 1 พันล้านดอลลาร์สหรัฐ ในขณะเดียวกัน โครงการคอมพิวเตอร์รุ่นที่ 5 ของญี่ปุ่นก็ได้จุดประกายให้รัฐบาลสหรัฐอเมริกาและสหราชอาณาจักรหันมาให้เงินทุนสนับสนุนงานวิจัยในสาขาปัญญาประดิษฐ์อีกครั้ง

ในทศวรรษ 1990 และช่วงต้นศตวรรษที่ 21 ปัญญาประดิษฐ์ประสบความสำเร็จอย่างสูงแม้ว่าจะมีหลายอย่างที่อยู่เบื้องหลัง มีการนำปัญญาประดิษฐ์มาใช้ในด้านการขนส่ง การทำเหมืองข้อมูล การวินิจฉัยทางการแพทย์ และในอีกหลายสาขาหลายอุตสาหกรรม ความสำเร็จของปัญญาประดิษฐ์นั้นได้รับการผลักดันมาจากหลายปัจจัย ไม่ว่าจะเรื่องของความเร็วของคอมพิวเตอร์ที่มีการประมวลผลที่เร็วขึ้น (ตามกฎของมัวร์) การให้ความสำคัญกับการแก้ปัญหาย่อยบางปัญหา การสร้างความเชื่อมโยงระหว่างปัญญาประดิษฐ์กับสาขาอื่นๆที่ทำงานอยู่กับปัญญาที่คล้ายๆกัน ตลอดจนความมุ่งมั่นของนักวิจัยที่ใช้วิธีการทางคณิตศาสตร์และวิทยาศาสตร์ที่มีหลักการ

เมื่อวันที่ 11 พฤษภาคม ค.ศ. 1997 เครื่องดีปบลูของบริษัทไอบีเอ็ม กลายมาเป็นคอมพิวเตอร์เครื่องแรกของโลกที่สามารถเล่นหมากรุกเอาชนะ แกรี คาสปารอฟ แชมป์โลกในขณะนั้นได้ และในเดือนกุมภาพันธ์ ค.ศ. 2011 เครื่องวัตสันของบริษัทไอบีเอ็มก็สามารถเอาชนะแชมป์รายการตอบคำถามจีโอพาร์ดีได้แบบขาดลอย นอกจากนี้ เครื่องเล่นเกมอย่าง Kinect ก็ใช้เทคโนโลยีของปัญญาประดิษฐ์ มาใช้ในการสร้างส่วนติดต่อกับผู้ใช้ผ่านทางการเคลื่อนไหวร่างกายใน 3 มิติเช่นกัน

นิยามของปัญญาประดิษฐ์[แก้]

หุ่นยนต์ของฮอนด้า ที่รู้จักดีในด้านปัญญาประดิษฐ์

มีคำนิยามของปัญญาประดิษฐ์มากมายหลากหลาย ซึ่งสามารถจัดแบ่งออกเป็น 4 ประเภทโดยมองใน 2 มิติ ได้แก่

  • ระหว่าง นิยามที่เน้นระบบที่เลียนแบบมนุษย์ กับ นิยามที่เน้นระบบที่ระบบที่มีเหตุผล (แต่ไม่จำเป็นต้องเหมือนมนุษย์)
  • ระหว่าง นิยามที่เน้นความคิดเป็นหลัก กับ นิยามที่เน้นการกระทำเป็นหลัก

ปัจจุบันงานวิจัยหลักๆ ของ AI จะมีแนวคิดในรูปที่เน้นเหตุผลเป็นหลัก เนื่องจากการนำ AI ไปประยุกต์ใช้แก้ปัญหา ไม่จำเป็นต้องอาศัยอารมณ์หรือความรู้สึกของมนุษย์ อย่างไรก็ตามนิยามทั้ง 4 ไม่ได้ต่างกันโดยสมบูรณ์ นิยามทั้ง 4 ต่างก็มีส่วนร่วมที่คาบเกี่ยวกันอยู่

นิยามดังกล่าวคือ

  1. ระบบที่คิดเหมือนมนุษย์ (Systems that think like humans)
    1. ปัญญาประดิษฐ์ คือ ความพยายามใหม่อันน่าตื่นเต้นที่จะทำให้คอมพิวเตอร์คิดได้ ... เครื่องจักรที่มีสติปัญญาอย่างครบถ้วนและแท้จริง ("The exciting new effort to make computers think ... machines with minds, in the full and literal sense." [Haugeland, 1985])
    2. ปัญญาประดิษฐ์ คือ กลไกของกิจกรรมที่เกี่ยวข้องกับความคิดมนุษย์ เช่น การตัดสินใจ การแก้ปัญหา การเรียนรู้ ("[The automation of] activities that we associate with human thinking, activities such as decision-making, problem solving, learning." [Bellman, 1978])
    • หมายเหตุ ก่อนที่จะทำให้เครื่องคิดอย่างมนุษย์ได้ ต้องรู้ก่อนว่ามนุษย์มีกระบวนการคิดอย่างไร ซึ่งการวิเคราะห์ลักษณะการคิดของมนุษย์ เป็นศาสตร์ด้าน cognitive science เช่น ศึกษาการเรียงตัวของเซลล์สมองในสามมิติ ศึกษาการถ่ายเทประจุไฟฟ้า และวิเคราะห์การเปลี่ยนแปลงทางเคมีไฟฟ้าในร่างกาย ระหว่างการคิด ซึ่งจนถึงปัจจุบัน (พ.ศ. 2548) เราก็ยังไม่รู้แน่ชัดว่า มนุษย์เรา คิดได้อย่างไร
  2. ระบบที่กระทำเหมือนมนุษย์ (Systems that act like humans)
    1. ปัญญาประดิษฐ์ คือ วิชาของการสร้างเครื่องจักรที่ทำงานในสิ่งซึ่งอาศัยปัญญาเมื่อกระทำโดยมนุษย์ ("The art of creating machines that perform functions that requires intelligence when performed by people." [Kurzweil, 1990])
    2. ปัญญาประดิษฐ์ คือ การศึกษาวิธีทำให้คอมพิวเตอร์กระทำในสิ่งที่มนุษย์ทำได้ดีกว่าในขณะนั้น ("The study of how to make computers do things at which, at the moment, people are better." [Rich and Knight, 1991])
    • หมายเหตุ การกระทำเหมือนมนุษย์ เช่น
      • สื่อสารได้ด้วยภาษาที่มนุษย์ใช้ เช่น ภาษาไทย ภาษาอังกฤษ ตัวอย่างคือ การแปลงข้อความเป็นคำพูด และ การแปลงคำพูดเป็นข้อความ
      • มีประสาทรับสัมผัสคล้ายมนุษย์ เช่น คอมพิวเตอร์รับภาพได้โดยอุปกรณ์รับสัมผัส แล้วนำภาพไปประมวลผล
      • เคลื่อนไหวได้คล้ายมนุษย์ เช่น หุ่นยนต์ช่วยงานต่าง ๆ อย่างการ ดูดฝุ่น เคลื่อนย้ายสิ่งของ
      • เรียนรู้ได้ โดยสามารถตรวจจับรูปแบบการเกิดของเหตุการณ์ใด ๆ แล้วปรับตัวสู่สิ่งแวดล้อมที่เปลี่ยนไปได้
  3. ระบบที่คิดอย่างมีเหตุผล (Systems that think rationally)
    1. ปัญญาประดิษฐ์ คือ การศึกษาความสามารถในด้านสติปัญญาโดยการใช้โมเดลการคำนวณ ("The study of mental faculties through the use of computational model." [Charniak and McDermott, 1985])
    2. ปัญญาประดิษฐ์ คือ การศึกษาวิธีการคำนวณที่สามารถรับรู้ ใช้เหตุผล และกระทำ ("The study of the computations that make it possible to perceive, reason, and act" [Winston, 1992])
    • หมายเหตุ คิดอย่างมีเหตุผล หรือคิดถูกต้อง เช่น ใช้หลักตรรกศาสตร์ในการคิดหาคำตอบอย่างมีเหตุผล เช่น ระบบผู้เชี่ยวชาญ
  4. ระบบที่กระทำอย่างมีเหตุผล (Systems that act rationally)
    1. ปัญญาประดิษฐ์คือการศึกษาเพื่อออกแบบเอเจนต์ที่มีปัญญา ("Computational Intelligence is the study of the design of intelligent agents" [Poole et al., 1998])
    2. ปัญญาประดิษฐ์ เกี่ยวข้องกับพฤติกรรมที่แสดงปัญญาในสิ่งที่มนุษย์สร้างขึ้น ("AI ... is concerned with intelligent behavior in artifacts" [Nilsson, 1998])
    • หมายเหตุ กระทำอย่างมีเหตุผล เช่น เอเจนต์ (โปรแกรมที่มีความสามารถในการกระทำ หรือเป็นตัวแทนในระบบอัตโนมัติต่าง ๆ) สามารถกระทำอย่างมีเหตุผลเพื่อบรรลุเป้าหมายที่ได้ตั้งไว้ เช่น เอเจนต์ในระบบขับรถอัตโนมัติ ที่มีเป้าหมายว่าต้องไปถึงเป้าหมายในระยะทางที่สั้นที่สุด ต้องเลือกเส้นทางที่ไปยังเป้าหมายที่สั้นที่สุดที่เป็นไปได้ จึงจะเรียกได้ว่า เอเจนต์กระทำอย่างมีเหตุผล อีกตัวอย่างเช่น เอเจนต์ในเกมหมากรุก ที่มีเป้าหมายว่าต้องเอาชนะคู่ต่อสู้ ก็ต้องเลือกเดินหมากที่จะทำให้คู่ต่อสู้แพ้ให้ได้ เป็นต้น

งานวิจัย[แก้]

เป้าหมาย[แก้]

ปัญหาโดยทั่วไปของการจำลอง (หรือสร้าง) ปัญญาถูกแบ่งออกเป็นปัญหาย่อยๆจำนวนมาก นักวิจัยด้านปัญญาประดิษฐ์พยายามศึกษาระบบย่อยๆเหล่านี้ โดยที่ได้รับความสนใจมากเป็นพิเศษ ได้แก่

การนิรนาม การให้เหตุผล และการแก้ไขปัญหา (Deduction, reasoning, problem solving)[แก้]

งานวิจัยด้านปัญญาประดิษฐ์ในช่วงแรกๆนั้นเริ่มต้นมาจากการให้เหตุผลแบบทีละขั้นๆ เป็นการให้เหตุผลแบบเดียวกับที่มนุษย์ใช้ในการไขปัญหาหรือหาข้อสรุปทางตรรกศาสตร์ เมื่อปลายทศวรรษที่ 1980 และ 1990 งานวิจัยด้านปัญญาประดิษฐ์ได้ถูกพัฒนาอย่างต่อเนื่อง และประสบความสำเร็จในการจัดการกับความไม่แน่นอนหรือความไม่สมบูรณ์ของข้อมูลได้ โดยใช้หลักการของความน่าจะเป็นและเศรษฐศาสตร์

ความยากของสาขานี้คือ อัลกอริทึมส่วนใหญ่ต้องใช้การคำนวณและประมวลผลมหาศาล มักจะเป็นการคำนวณแบบสลับสับเปลี่ยนจำนวนมาก และทำให้คอมพิวเตอร์ต้องใช้หน่วยความจำมหาศาลเมื่อต้องแก้ปัญหาที่มีขนาดใหญ่มาก ดังนั้น งานวิจัยในสายนี้จึงมักมุ่งเน้นการหาอัลกอริทึมที่มีประสิทธิภาพในการค้นหาอย่างมีประสิทธิภาพ

มนุษย์มีความสามารถในการไขปัญหาอย่างรวดเร็ว สามารถตัดสินใจได้ตามสัญชาติญาณและมีความรวดเร็วกว่าความรู้สึกตามสามัญสำนึกและการอนุมานแบบทีละขั้นแบบที่งานวิจัยด้านปัญญาประดิษฐ์ในช่วงแรกทำได้ ปัจจุบัน งานวิจัยด้านปัญญาประดิษฐ์เริ่มหันมาให้ความสนใจการแก้ไขปัญหาที่ย่อยไปกว่าเชิงสัญลักษณ์ หรือที่เรียกว่า sub-symbolic problem solving ไม่ว่าจะเป็น เอเยนต์ฝังตัว โครงข่ายประสาทเทียม หรือการใช้หลักการทางสถิติกับปัญญาประดิษฐ์ เพื่อเลียนแบบธรรมชาติของมนุษย์ในการเดาอย่างมีหลักการทางความน่าจะเป็น

เทคนิคที่นิยมใช้กันมากก็คือ การเขียนโปรแกรมเชิงตรรกะ (Logic programming) เมื่อเราแทนความรู้ของเครื่องด้วย first-order logic และ bayesian inference เมื่อเราแทนความรู้ของเครื่องด้วย bayesian networks

การแทนความรู้ (Knowledge representation)[แก้]

การแทนความรู้ เป็นหัวใจสำคัญของงานวิจัยด้านปัญญาประดิษฐ์ เป็นการศึกษาด้านเก็บความรู้ (knowledge) ไว้ในเครื่องจักร เราเชื่อกันว่าหากจะให้เครื่องจักรแก้ไขปัญหาให้จะต้องใช้ความรู้จำนวนมหาศาลบนโลกนี้ สิ่งที่ปัญญาประดิษฐ์ต้องการจะหาสัญลักษณ์มาแทนได้แก่ วัตถุ คุณสมบัติ ประเภท ความสัมพันธ์ระหว่างวัตถุ ไม่ว่าจะเป็นสถานการณ์ เหตุการณ์ สถานะ และเวลา ตลอดจนเหตุและผล ความรู้เกี่ยวกับความรู้ (รู้ว่าคนอื่นรู้อะไร) และอื่นๆอีกมากมาย การแทน"สิ่งที่มีอยู่"นั้นเรียกว่าสาขาภววิทยา เป็นการแทนที่กลุ่มของวัตถุ ความสัมพันธ์ แนวคิด และอื่นๆบนเครื่องจักร ประเด็นสำคัญของการแทนความรู้ คือ

  • ทำอย่างไรจะแสดงความรู้ได้อย่างกะทัดรัด ประหยัดหน่วยความจำ
  • จะนำความรู้ที่เก็บไว้นี้ไปใช้ในการให้เหตุผลอย่างไร
  • จะมีการเรียนรู้ความรู้ใหม่ ๆ ด้วยเทคนิคการเรียนรู้ของเครื่อง ให้ความรู้ที่ได้อยู่ในรูปแบบความรู้ที่เราออกแบบไว้ได้อย่างไร

การแทนความรู้สามารถแบ่งออกได้เป็นสองประเภทหลัก คือ

ระบบผู้เชี่ยวชาญ (Expert system)[แก้]

ระบบผู้เชี่ยวชาญ เป็นการศึกษาเรื่องสร้างระบบความรู้ของปัญหาเฉพาะอย่าง เช่น การแพทย์หรือวิทยาศาสตร์ จุดประสงค์ของระบบนี้คือ ทำให้เสมือนมีมนุษย์ผู้เชี่ยวชาญคอยให้คำปรึกษา และคำตอบเกี่ยวกับปัญหาต่าง ๆ งานวิจัยด้านนี้มีจุดประสงค์หลักว่า เราไม่ต้องพึ่งมนุษย์ในการแก้ปัญหา แต่อย่างไรก็ตามในทางปฏิบัติแล้ว ระบบผู้เชี่ยวชาญยังต้องพึ่งมนุษย์เพื่อให้ความรู้พื้นฐานในช่วงแรก การจะทำงานวิจัยเรื่องนี้ต้องอาศัยความรู้พื้นฐานหลายเรื่อง ไม่ว่าจะเป็น การแทนความรู้, การให้เหตุผล และ การเรียนรู้ของเครื่อง

การวางแผนของเครื่อง (Automated planning)[แก้]

เอเยนต์ฉลาดจะต้องมีความสามารถในการตั้งเป้าหมายและบรรลุเป้าหมายได้เอง จะต้องมีวิธีการนึกภาพของอนาคต (จะต้องสามารถมองเห็นสถานะต่างๆบนโลกและสามารถคาดการณ์ได้ว่าโลกจะเปลี่ยนไปอย่างไรได้) และสามารถที่จะตัดสินใจเลือกทางเลือกที่มีประโยชน์ (หรือมีค่า) มากที่สุดได้

ในปัญหาการวางแผนแบบยุคเก่านั้น เอเยนต์จะมีข้อสมมติฐานว่าเอเยนต์เป็นวัตถุเดียวที่มีการกระทำบนโลก แต่อย่างไรก็ตาม หากเอเยนต์ไม่ได้เป็นเพียงวัตถุเดียวที่มีการกระทำ เอเยนต์จะต้องสืบให้แน่ใจอย่างซ้ำๆว่าโลกนั้นตรงกับตามที่คาดการณ์ไว้หรือไม่ และจะต้องเปลี่ยนแปลงแผนที่วางไว้อย่างไร ทำให้เอเยนต์ยุคใหม่นี้จะต้องจัดการกับความไม่แน่นอนด้วย

ปัจจุบัน ได้มีงานวิจัยสาขาการวางแผนของเอเยนต์หลายตัว ที่อาศัยความร่วมมือและการแข่งขันของเอเยนต์หลายๆตัวเพื่อให้บรรลุเป้าหมายที่กำหนดไว้ โดยใช้วิธีการที่มีประสิทธิภาพอย่างขั้นตอนวิธีเชิงวิวัฒนาการหรือความฉลาดแบบกลุ่ม

การเรียนรู้ของเครื่อง (Machine learning)[แก้]

การเรียนรู้ของเครื่อง เป็นการศึกษาอัลกอริทึมคอมพิวเตอร์ที่ขั้นตอนวิธีจะถูกปรับปรุงอย่างอัตโนมัติผ่านการเรียนรู้จากประสบการณ์ เป็นหัวใจหลักของงานวิจัยด้านปัญญาประดิษฐ์นับตั้งแต่มีการก่อตั้งสาขานี้มา

การเรียนรู้แบบไม่มีผู้สอน (Unsupervised learning) เป็นความสามารถในการหาแบบแผนบางอย่างจากข้อมูลที่เข้ามา ส่วนการเรียนรู้แบบมีผู้สอน (Supervised learning) นั้นหมายถึงการแบ่งประเภทข้อมูลและการวิเคราะห์การถดถอยเชิงตัวเลข ปัญหาการแบ่งประเภทของข้อมูลนั้นใช้เพื่อกำหนดว่าของชิ้นใหม่ชิ้นหนึ่งจัดอยู่ในกลุ่มประเภทใดหลังจากที่ได้เรียนรู้ตัวอย่างสอนที่ระบุว่าของแต่ละอย่างควรจะอยู่ในประเภทใดมาแล้ว ส่วนการวิเคราะห์การถดถอยนั้นพยายามจะสร้างฟังก์ชันทางคณิตศาสตร์ที่อธิบายความสัมพันธ์ระหว่างข้อมูลขาเข้ากับข้อมูลขาออก และทำนายว่าข้อมูลขาออกควรจะเปลี่ยนไปอย่างไรเมื่อข้อมูลขาเข้าเปลี่ยนแปลง ในการเรียนรู้แบบเสริมกำลัง (Reinforcement learning) นั้น เอเยนต์จะได้รับรางวัลหากมีการตอบสนองที่ดีและถูกลงโทษหากมีการตอบสนองที่ไม่ดี เอเยนต์จะเรียนรู้จากรางวัลและการลงโทษนี้ในการสร้างกลยุทธ์เพื่อแก้ไขปัญหาต่างๆ การเรียนรู้ทั้งสามแบบนี้สามารถวิเคราะห์ได้ด้วยทฤษฎีการตัดสินใจ (Decision theory) โดยใช้แนวคิดของประโยชน์ การวิเคราะห์ทางคณิตศาสตร์ของอัลกอริทึมทางการเรียนรู้ของเครื่องจักรและการวิเคราะห์ประสิทธิภาพของอัลกอริทึมนั้นเป็นอีกหนึ่งสาขาทางด้านวิทยาการคอมพิวเตอร์สายทฤษฎี การเรียนรู้ของเครื่องจักรถือว่าเป็นหัวใจสำคัญของการพัฒนาหุ่นยนต์เช่นกัน ทำให้หุ่นยนต์มีทักษะใหม่ๆได้ ผ่านการสำรวจด้วยตนเอง การติดต่อกับผู้สอนที่เป็นมนุษย์ การเลียนแบบ และอื่นๆ

การประมวลผลภาษาธรรมชาติ (Natural language processing)[แก้]

การประมวลผลภาษาธรรมชาติ คือการทำให้เครื่องมีความสามารถที่จะอ่านและเข้าใจภาษาที่มนุษย์พูดในชีวิตประจำวัน ระบบที่สามารถประมวลผลภาษาธรรมชาติได้มีประสิทธิภาพเพียงพอจะทำให้เรามีส่วนติดต่อกับผู้ใช้ที่ใช้ภาษาธรรมชาติ และหาความรู้ได้โดยตรงจากแหล่งข้อมูลที่มนุษย์เขียน เช่น หนังสือพิมพ์ นอกจากนี้ยังสามารถนำไปประยุกต์ใช้ได้โดยตรงกับการค้นข้อมูล (หรือการทำเหมืองข้อความ) การตอบคำถาม และการแปล

วิธีการโดยทั่วไปของการประมวลผลและดึงเอาความหมายมาจากธรรมชาติ คือ การทำดัชนีความหมาย นอกจากนี้ การเพิ่มความเร็วในการประมวลผลและลดขนาดของข้อมูลที่จะจัดเก็บก็ทำให้การค้นหาดัชนีจากฐานข้อมูลขนาดใหญ่มีประสิทธิภาพมากยิ่งขึ้น

การรับรู้ของเครื่อง (Machine perception)[แก้]

การรับรู้ของเครื่อง คือ ความสามารถในการอ่านข้อมูลขาเข้าจากเซนเซอร์ (เช่น กล้อง ไมโครโฟน เซนเซอร์สัมผัส โซนาร์ หรืออื่นๆ) เพื่อจะเข้าใจบริบทของโลกภายนอก ตัวอย่างของงานวิจัยด้านนี้ ได้แก่

การเคลื่อนไหวและการจัดการ (Motion and manipulation)[แก้]

ดูบทความหลักที่: วิทยาการหุ่นยนต์

สาขาวิทยาการหุ่นยนต์มีความคล้ายคลึงกับสาขาปัญญาประดิษฐ์ หุ่นยนต์ต้องการความฉลาดเพื่อจัดการกับสิ่งต่างๆ เช่น การจัดการวัตถุ ระบบนำทาง การแก้ปัญหาย่อยเช่นการหาที่อยู่ตัวเองหรือหาที่อยู่ของสิ่งอื่นๆ การทำแผนที่ การวางแผนการเคลื่อนไหวหรือเส้นทาง

เป้าหมายระยะยาว[แก้]

เป้าหมายระยะยาวของปัญญาประดิษฐ์ ได้แก่ ความฉลาดทางสังคม ความคิดสร้างสรรค์ และความฉลาดทั่วไป

ความฉลาดทางสังคม (Social intelligence)[แก้]

การคำนวณเชิงอารมณ์ (Affective computing) คือ การศึกษาและพัฒนาระบบและเครื่องมือที่สามารถรู้จำ แปรผล ประมวลผล และจำลองอารมณ์ความรู้สึกของมนุษย์ได้ เป็นสหสาขาวิชาที่เกี่ยวข้องกับวิทยาการคอมพิวเตอร์ จิตวิทยา และประชานศาสตร์ สาขานี้เริ่มต้นจากความต้องการทางปรัชญาที่อยากจะเข้าถึงอารมณ์ของมนุษย์ สาขาการคำนวณเชิงอารมณ์สมัยใหม่นี้เริ่มจากคำนิยามของ โรซาไลนด์ ปิการ์ด นักวิทยาศาสตร์คอมพิวเตอร์ที่ MIT ที่เริ่มใช้คำนี้ในผลงานวิจัยปี ค.ศ. 1995 เกี่ยวกับการคำนวณเชิงอารมณ์ แรงบันดาลใจของงานวิจัยสายนี้คือความต้องการที่จะจำลองความเข้าใจความรู้สึกของคนอื่นของมนุษย์ ต้องการมีเครื่องจักรที่สามารถแปลผลสถานะของอารมณ์ของมนุษย์และปรับเปลี่ยนพฤติกรรมให้ตอบสนองกับอารมณ์นั้นๆของมนุษย์อย่างเหมาะสม

อารมณ์และทักษะทางสังคมมีบทบาทสำคัญต่อการพัฒนาความฉลาดของเครื่องจักร ก่อนอื่น เครื่องจักรจะต้องทำนายการกระทำของคนอื่น ผ่านทางการเข้าใจจุดมุ่งหมายและสถานะของอารมณ์ผู้อื่น (ส่วนนี้มีความเกี่ยวข้องกับทฤษฎีเกม ทฤษฎีการตัดสินใจ ตลอดจนความสามารถในการสร้างแบบจำลองอารมณ์ของมนุษย์ และความสามารถในการตรวจจับอารมณ์ผู้อื่นของมนุษย์) นอกจากนี้ ในการสร้างปฏิสัมพันธ์ระหว่างมนุษย์และคอมพิวเตอร์ที่ดีนั้น เครื่องจักรที่ฉลาดควรจะแสดงอารมณ์ออกมาด้วย แม้ว่าอารรมณ์นั้นจะไม่ได้เป็นอารมณ์ที่ตนรู้สึกจริงๆก็ตาม

ความคิดสร้างสรรค์ (Computational creativity)[แก้]

สาขาย่อยของปัญญาประดิษฐ์สาขาหนึ่งต้องการจะสร้างความคิดสร้างสรรค์ ทั้งทางทฤษฎี (ในมุมมองทางปรัชญาและจิตวิทยา) และทางปฏิบัติ (ผ่านทางประยุกต์ใช้ระบบที่ให้ผลลัพธ์ที่ดูคล้ายความคิดสร้างสรรค์ หรือระบบที่สามารถตรวจจับและประเมินความคิดสร้างสรรค์ได้)

ความฉลาดทั่วไป (General intelligence)[แก้]

นักวิจัยทางปัญญาประดิษฐ์หลายคนเชื่อว่า สุดท้ายแล้ว งานวิจัยต่างๆจะถูกรวมเข้าสู่เครื่องจักรกลายเป็นความฉลาดแบบทั่วไป (บางครั้งก็เรียกว่า ปัญญาประดิษฐ์แบบแข็ง (String AI)) เป็นการรวมเอาทักษะต่างๆเข้าด้วยกันและมีความสามารถมากกว่ามนุษย์ทุกคน นักวิจัยบางคนเชื่อว่าความฉลาดแบบนี้จะต้องมีคุณลักษณะทางมานุษยรูปนิยมบางอย่าง เช่น สำนึกประดิษฐ์ หรือ สมองประดิษฐ์

การวิจัยความฉลาดทั่วไปนั้นจะต้องแก้ปัญหาหลายอย่าง ตัวอย่างเช่น การแปลความหมายโดยเครื่องนั้นจะต้องให้เครื่องอ่านและเขียนข้อมูลภาษาธรรมชาติได้ทั้งสองภาษา ให้เหตุผล และรู้ว่ากำลังพูดถึงเรื่องอะไรกันอยู่ (การแทนความรู้) รวมทั้งจะต้องมีรู้ความตั้งใจของผู้เขียน (ความฉลาดทางสังคม) กล่าวคือ การแก้ปัญหาทางการวิจัยความฉลาดทั่วไปนั้น จะต้องแก้ปัญหาทางปัญญาประดิษฐ์หลายๆอย่างไปพร้อมๆกัน

วิธีการ[แก้]

ปัจจุบัน ยังไม่มีทฤษฎีหรือกระบวนทัศน์ใดๆที่เป็นแนวทางที่ชัดเจนให้กับการวิจัยทางปัญญาประดิษฐ์ นักวิจัยบางคนก็ไม่เห็นด้วยกับบางเรื่อง ปัญหาที่ยังไม่มีคำตอบก็ยังมีอยู่มากมาย เช่น ปัญญาประดิษฐ์ควรจะมีพฤติกรรมคล้ายกับของจริงในธรรมชาติในทางจิตวิทยาหรือประสาทวิทยาหรือไม่ หรือ ชีววิทยาของร่างกายมนุษย์นั้นไม่ได้สัมพันธ์อะไรกับปัญญาประดิษฐ์แบบที่นกไม่ได้สัมพันธ์ใดๆกับอากาศยานหรือไม่ หรือ พฤติกรรมที่ฉลาดสามารถอธิบายได้ด้วยหลักการที่ง่ายๆธรรมดาๆเช่นในทางตรรกะได้หรือไม่ หรือ เราจำเป็นหรือไม่ที่จะต้องแก้ปัญหาที่ไม่เกี่ยวข้องให้ครบ หรือ ความฉลาดสามารถถูกสร้างขึ้นมาโดยใช้สัญลักษณ์ขั้นสูงอย่างคำหรือแนวความคิดได้หรือไม่และจำเป็นจะต้องมีการประมวลผลสัญลักษณ์ที่ย่อยไปกว่านั้นหรือไม่

ไซเบอร์เนติกส์ และการจำลองสมอง (Cybernetics and brain simulation)[แก้]

ในทศวรรษที่ 1940 และ 1950 นักวิทยาศาสตร์หลายคนพยายามจะหาความเชื่อมโยงระหว่างประสาทวิทยา ทฤษฎีสารสนเทศ และไซเบอร์เนติกส์ นักวิจัยบางคนได้สร้างเครือข่ายอิเล็กทรอนิกส์ขึ้นมาเพื่อสร้างความฉลาดขั้นต้นขึ้นมา ปัจจุบันวิธีการนี้ได้ถูกล้มเลิกไปแล้ว

สัญลักษณ์ (Symbolic)[แก้]

หลังจากที่เริ่มมีความเป็นไปได้ที่จะสร้างเครื่องคอมพิวเตอร์ดิจิตอลขึ้นในราวทศวรรษที่ 1950 นักวิจัยทางปัญญาประดิษฐ์หลายคนก็เริ่มศึกษาดูความเป็นไปได้ที่จะลดรูปความฉลาดของมนุษย์ให้อยู่ในรูปสัญลักษณ์และการจัดการกับสัญลักษณ์ต่างๆ ศูนย์กลางของการวิจัยสาขานี้อยู่ที่มหาวิทยาลัยคาร์เนกีเมลลอน มหาวิทยาลัยสแตนฟอร์ด และสถาบันเทคโนโลยีแมสซาชูเซตส์ แต่ละมหาวิทยาลัยได้สร้างแนวทางการวิจัยเป็นของตัวเอง จอห์น ฮากแลนด์ตั้งชื่อหลักการเหล่านี้ว่า GOFAI (Good Old-Fashioned Artificial Intelligence) หรือปัญญาประดิษฐ์ในรูปแบบเก่า ต่อมาในช่วงทศวรรษที่ 1960 งานวิจัยโดยการแทนสัญลักษณ์นี้เริ่มประสบความสำเร็จในการจำลองความคิดชั้นสูงของมนุษย์ในบางโปรแกรม หลังจากที่วิธีการที่ใช้ไซเบอร์เนติกส์หรือโครงข่ายประสาทเทียมถูกล้มเลิกไป นักวิจัยในช่วงทศวรรษที่ 1960 และ 1970 หันมาใช้หลักการทางสัญลักษณ์เพราะเชื่อว่าวิธีการนี้จะประสบความสำเร็จในการสร้างปัญญาประดิษฐ์ทั่วไปที่เชื่อว่าเป็นเป้าหมายของงานวิจัยสาขานี้

  • การจำลองการรับรู้ (Cognitive simulation)

นักเศรษฐศาสตร์อย่างเฮอร์เบิร์ต ไซมอนและอัลเลน นิวเวลล์ได้ศึกษาทักษะการแก้ปัญหาของมนุษย์และพยายามทำให้มีระเบียบแบบแผน งานวิจัยของทั้งสองคนได้กลายมาเป็นจุดเริ่มต้นของสาขาของปัญญาประดิษฐ์ที่เรียกว่า วิทยาศาสตร์พุทธิปัญญา การวิจัยดำเนินการ และวิทยาการจัดการในเวลาต่อมา งานวิจัยสายนี้ใช้ผลจากการทดลองทางจิตวิทยาในการพัฒนาโปรแกรมที่สามารถจำลองเทคนิคที่คนใช้เพื่อแก้ปัญหาได้ วิธีการเหล่านี้มีจุดเริ่มต้นที่มหาวิทยาลัยคาร์เนกีเมลลอน

  • วิธีการเชิงตรรกะ (Logic-based)

จอห์น แม็กคาร์ธีย์ ใช้วิธีการที่แตกต่างไปจากวิธีของนิวเวลล์และไซมอน โดยรู้สึกว่าเครื่องจักรไม่จำเป็นต้องจำลองการคิดของมนุษย์ แต่ควรจะพยายามหาแก่นของการให้เหตุผลเชิงนามธรรมและการแก้ปัญหา ไม่ต้องสนใจว่าแต่ละคนจะใช้อัลกอรึทึมเดียวกันหรือไม่ ห้องปฏิบัติการวิจัยของเขาที่มหาวิทยาลัยสแตนฟอร์ดเน้นเรื่องของการใช้ตรรกะบัญญัติ (formal logic) ในการแก้ปัญหาต่างๆ ไม่ว่าจะเป็นการแทนความรู้ การวางแผน และการเรียนรู้ นอกจากนี้ มหาวิทยาลัยเอดินบะระและอีกหลายแห่งในยุโรปก็หันมาให้ความสนใจด้านการพัฒนาโปรแกรมเชิงตรรกะเช่นกัน ไม่ว่าจะเป็นภาษาโปรล็อกหรือการเขียนโปรแกรมเชิงตรรกะ

  • วิธีการไม่ใช้ตรรกะ (Anti-logic)

ในขณะเดียวกัน นักวิจัยที่สถาบันเทคโนโลยีแมสซาชูเซตส์ (เช่น มาร์วิน มินสกี และเซย์มัวร์ แพเพิร์ต) พบว่า การแก้ไขปัญหาบางอย่าง เช่น คอมพิวเตอร์วิทัศน์และการประมวลผลภาษาธรรมชาติจำเป็นต้องมีวิธีการที่ไม่จำเป็นต้องเตรียมล่วงหน้า นักวิจัยได้อ้างว่า ไม่มีหลักการที่ง่ายหรือหลักการทั่วไป (อย่างเช่นตรรกะ) ที่จะจับต้องพฤติกรรมความฉลาดของสิ่งมีชีวิตได้ โรเจอร์ แชงก์ ได้ตั้งชื่อว่า หลักการแอนตีลอจิก หรือหลักการ"ไม่เรียบร้อย" (เพื่อให้ตรงข้ามกับความมีระเบียบเรียบร้อยที่คาร์เนกีเมลลอนและสแตนฟอร์ด) ตัวอย่างของงานวิจัยสายนี้เช่น ฐานความรู้เกี่ยวกับสามัญสำนึก อันเป็นแนวคิดที่ค่อนข้างซับซ้อนในวงการปัญญาประดิษฐ์สมัยนั้น

  • วิธีการเชิงความรู้ (Knowledge-based)

เมื่อคอมพิวเตอร์เริ่มมีความจำที่ใหญ่ขึ้นตั้งแต่ออกสู่ตลาดเมื่อราวปี ค.ศ. 1970 นักวิจัยจากมหาวิทยาลัยเริ่มต้น 3 แห่งเริ่มหันมาสร้างความรู้สำหรับปัญญาประดิษฐ์ แนวคิดที่เปลี่ยนวงการนี้นำไปสู่การพัฒนาและการใช้ระบบผู้เชี่ยวชาญ และเป็นรูปแบบของซอฟต์แวร์ปัญญาประดิษฐ์แบบแรกที่ประสบความสำเร็จอย่างแท้จริง การปฏิวัติวงการดังกล่าวนี้ได้รับแรงขับเคลื่อนมาจากแนวคิดที่ว่า การนำปัญญาประดิษฐ์ไปประยุกต์ใช้นั้นจำเป็นจะต้องมีความรู้ในปริมาณมหาศาล

สัญลักษณ์ย่อย (Sub-symbolic)[แก้]

หลังจากวิธีการเชิงสัญลักษณ์ทางด้านปัญญาประดิษฐ์เริ่มหยุดชะงักในทศวรรษที่ 1980 นักวิจัยหลายคนก็เชื่อว่าระบบเชิงสัญลักษณ์ไม่น่าจะสามารถเลียนแบบกระบวนการที่เกี่ยวข้องกับสติปัญญาของมนุษย์ได้ โดยเฉพาะการรับรู้ วิทยาการหุ่นยนต์ การเรียนรู้ และการรู้จำแบบ นักวิจัยหลายคนได้เสนอหลักการของ"สัญลักษณ์ย่อย"กับปัญหาทางปัญญาประดิษฐ์บางปัญหา

  • วิธีการจากล่างขึ้นบน (Bottom-up)

นักวิจัยจากสาขาที่เกี่ยวข้องกับวิทยาการหุ่นยนต์ อาทิ รอดนีย์ บรูกส์ ปฏิเสธที่จะใช้ปัญญาประดิษฐ์เชิงสัญลักษณ์และหันมาใช้วิธีการทางวิศวกรรมที่จะทำให้หุ่นยนต์เคลื่อนไหวและอยู่รอดได้ งานวิจัยรูปแบบใหม่ในมุมมองแบบไม่อิงสัญลักษณ์นี้ทำให้งานวิจัยเชิงไซเบอร์เนติกส์ในยุค 1950 กลับมาอีกครั้ง และก่อให้เกิดการใช้ทฤษฎีควบคุมในสาขาปัญญาประดิษฐ์ขึ้น นอกจากนี้ ยังมีงานวิจัยพัฒนา"จิตใจฝังตัว"ในสาขาของ cognitive science ที่อ้างอิงแนวคิดที่ว่า ความฉลาดชั้นสูงนั้นล้วนเป็นส่วนประกอบมาจากร่างกายส่วนล่าง (เช่น การเคลื่อนไหว การรับรู้ และการมองเห็นภาพ) ทั้งนั้น

  • ความฉลาดด้านการคำนวณ หรือการคำนวณแบบอ่อน (Computational intelligence and soft computing)

กลางทศวรรษที่ 1980 เดวิด รูเมลฮาร์ต และนักวิจัยกลุ่มอื่นชุบชีวิตของสาขาโครงข่ายประสาทเทียมและศาสตร์การเชื่อมต่อขึ้นมาอีกครั้ง โครงข่ายประสาทเทียมถือเป็นตัวอย่างหนึ่งของการคำนวณแบบอ่อน อันเป็นวิธีการแก้ไขปัญหาที่แก้ไม่ได้ด้วยการใช้ความแน่นอนทางตรรกะ แต่สามารถแก้ได้โดยใช้การประมาณคำตอบที่แม่นยำเพียงพอ หลักการอื่นๆของการคำนวณแบบอ่อน ได้แก่ ระบบคลุมเคลือ (fuzzy system) การคำนวณเชิงวิวัฒนาการ (evolutionary computation) และวิธีการอื่นๆทางสถิติ

วิธีการทางสถิติ[แก้]

ในทศวรรษ 1990 นักวิทยาศาสตร์ด้านปัญญาประดิษฐ์ได้พัฒนาเครื่องมือทางคณิตศาสตร์ที่มีประสิทธิภาพในการแก้ไขปัญหาย่อยบางอย่างได้ เครื่องมือเหล่านี้มีความเป็นวิทยาศาสตร์มากในแง่ที่ว่า ผลสามารถวัดและประเมินได้อย่างชัดเจน จนเป็นหัวใจสำคัญของปัญญาประดิษฐ์ในยุคหลังนี้ เนื่องจากวิธีการนี้ตั้งอยู่บนพื้นฐานของคณิตศาสตร์ จึงนำไปปรับใช้หรือพัฒนาร่วมกับหลักการในสาขาอื่นๆได้ง่าย เช่น คณิตศาสตร์ เศรษฐศาสตร์ หรือการวิจัยดำเนินการ นักวิทยาศาสตร์ชื่อสจวร์ต รัสเซลล์และปีเตอร์ นอร์วิกอธิบายวิธีการนี้ไว้ว่าเป็น"การปฏิวัติ"และ"ความสำเร็จของความเป็นระเบียบ" อย่างไรก็ตาม ก็มีหลายคนที่ไม่เห็นด้วยกับเทคนิคเหล่านี้โดยชี้ว่า เทคนิคเหล่านี้มีความเฉพาะเจาะจงกับบางปัญหามากเกินไป และไม่สามารถบรรลุเป้าหมายระยะยาวในการสร้างความฉลาดทั่วไปได้ ปัจจุบันยังมีการถกเถียงกันอยู่เรื่องความเกี่ยวข้องและความถูกต้องของการใช้หลักการทางสถิติกับปัญญาประดิษฐ์ เช่น การถกเถียงกันระหว่างปีเตอร์ นอร์วิกกับโนม ชัมสกี

วิธีผสมผสาน[แก้]

เอเยนต์ทรงปัญญา คือ ระบบที่สามารถรับรู้สิ่งแวดล้อมรอบข้างได้และเลือกปฏิบติตามวิธีที่มีโอกาสประสบความสำเร็จมากที่สุด เอเยนต์ทรงปัญญาในรูปแบบที่ง่ายที่สุดคือโปรแกรมที่สามารถแก้ไขปัญหาบางอย่างได้ ส่วนเอเยนต์ที่ซับซ้อนกว่านั้นก็ได้แก่มนุษย์และการรวมกลุ่มของมนุษย์ มุมมองนี้ทำให้นักวิจัยสามารถศึกษาปัญหาแบบแยกเฉพาะส่วนและหาคำตอบที่มีประโยชน์และถูกต้องได้โดยไม่ต้องมีเป้าหมายรวมกันเพียงเป้าหมายเดียว เอเยนต์จะต้องแก้ปัญหาเฉพาะอย่างปัญหาหนึ่งได้โดยการใช้วิธีการที่ได้ผล เอเยนต์บางเอเยนต์อาจจะใช้วิธีการทางสัญลักษณ์ หรือบางตัวอาจจะใช้วิธีการทางตรรกะ โครงข่ายประสาทเทียม หรือวิธีการอื่นๆ แนวความคิดนี้ทำให้นักวิจัยสามารถสื่อสารกับสาขาอื่นได้ ไม่ว่าจะเป็นด้านเศรษฐศาสตร์หรือด้านทฤษฎีการตัดสินใจที่ใช้แนวคิดของเอเยนต์นามธรรมเช่นกัน แนวคิดเรื่องเอเยนต์ทรงปัญญานี้ได้รับการยอมรับเป็นวงกว้างนับตั้งแต่ทศวรรษ 1990

นักวิจัยได้ออกแบบระบบเพื่อสร้างระบบฉลาดที่สามาาถติดต่อกับเอเยนต์ได้ผ่านทางระบบเอเยนต์หลายตัว ระบบดังกล่าวมีทั้งส่วนที่เป็นสัญลักษณ์และสัญลักษณ์ย่อย หรือเป็นระบบผสมผสาน (ไฮบริด) และการศึกษาระบบดังกล่าวนี้เรียกว่า การบูรณาการระบบปัญญาประดิษฐ์

เครื่องมือ[แก้]

หลังจากปัญญาประดิษฐ์ได้มีการพัฒนาอย่างต่อเนื่องมากประมาณ 50 ปี ได้มีการพัฒนาเครื่องมือเพื่อใช้ในการแก้ไขปัญหาที่ยากในทางวิทยาการคอมพิวเตอร์ ตัวอย่างของวิธีการได้แก่

การค้นหาและการหาค่าที่เหมาะที่สุด (Search and optimization)[แก้]

ปัญหาทางปัญญาประดิษฐ์หลายๆปัญหาถูกแก้ในรูปแบบของทฤษฎีที่ว่าด้วยการค้นหาคำตอบจากคำตอบที่เป็นไปได้หลายๆคำตอบ การให้เหตุผลสามารถเปลี่ยนรูปไปเป็นรูปแบบของการค้นหาได้ ตัวอย่างเช่น การพิสูจน์ทางตรรกะสามารถมองได้ว่าเป็นการค้นหาเส้นทางจากหลักฐานไปสู่ข้อสรุปได้ โดยผ่านขั้นตอนที่เรียกว่า การอนุมาน อัลกอริทึมทางวิทยาการหุ่นยนต์สำหรับการขยับข้อต่อและหยิบจับวัตถุก็ใช้วิธีการค้นหาสิ่งที่อยู่ภายในพื้นที่นั้นๆ อัลกอริทึมทางด้านการเรียนรู้ของเครื่องหลายๆอันก็ใช้วิธีการค้นหาบนคำตอบที่ดีที่สุด

อย่างไรก็ตาม การค้นหาแบบธรรมดานั้นไม่ค่อยจะเพียงพอสำหรับปัญหาในโลกจริง เพราะส่วนที่จะต้องค้นหานั้นมีขนาดใหญ่มหาศาล ทำให้การค้นหาเป็นไปได้ช้าหรือไม่สามารถทำให้เสร็จได้เลย หนึ่งในวิธีการแก้ปัญหาคือการใช้ค่าฮิวริสติกเพื่อตัดตัวเลือกที่ไม่น่าจะพาไปสู่เป้าหมายได้ (เรียกว่าวิธีการตัดกิ่งในต้นไม้ค้นหา) ค่าฮิวริสติกนี้ทำให้โปรแกรมสามารถเดาได้คร่าวๆว่าเส้นทางไหนที่น่าจะพาไปสู่คำตอบ และช่วยทำให้ขนาดของตัวอย่างที่จะต้องค้นหาเล็กลงด้วย

การค้นหาเริ่มมีบทบาทเด่นชัดในทศวรรษที่ 1990 โดยใช้ทฤษฎีการหาค่าที่เหมาะสมที่สุดทางคณิตศาสตร์ ปัญหาหลายๆอย่างก็สามารถเริ่มต้นการค้นหาได้ด้วยการเดาบางอย่าง จากนั้นก็ปรับวิธีการเดาไปเรื่อยๆจนกระทั่งไม่จำเป็นต้องปรับอีกแล้ว อัลกอริทึมเหล่านี้สามารถเรียกให้เห็นภาพได้ง่ายๆว่าเป็นการปีนเขา โดยเริ่มจากการค้นหาที่จุดสุ่มในที่ราบ จากนั้นก็ค่อยๆกระโดดและไต่เขาขึ้นไปเรื่อยๆโดยใช้หลักการเดาว่าจุดไหนที่น่าจะทำให้เราปีนเขาขึ้นไป จนกระทั่งในที่สุดเราไปอยู่บนยอดสุดของภูเขา

การคำนวณเชิงวิวัฒนาการก็ใช้หลักการของการหาค้นหาค่าที่เหมาะที่สุดเช่นกัน ตัวอย่างเช่น เราอาจจะเริ่มต้นจากกลุ่มของสิ่งมีชีวิตกลุ่มหนึ่ง (สุ่มมา) จากนั้นก็ทำการวิวัฒนาการและผสมผสาน เลือกเอากลุ่มตัวอย่างที่ดีที่สุดเพื่ออยู่รอดต่อไปในรุ่น (การปรับการค้นหา) การคำนวณเชิงวิวัฒนาการมีหลายวิธี ได้แก่ ความฉลาดแบบกลุ่ม (swarm intelligence) หรือ ขั้นตอนวิธีเชิงวิวัฒนาการ (evolutionary algorithm) เช่น ขั้นตอนวิธีเชิงพันธุกรรม

ตรรกะ (Logic)[แก้]

ในการแทนความรู้และการแก้ปัญหานั้นมีการใช้ตรรกะอย่างมาก แต่ตรรกะก็สามารถประยุกต์ใช้ได้กับปัญญาอื่นได้เช่นกัน เช่น อัลกอริทึม Satplan ก็ใช้ตรรกะในการวางแผน และการเรียนรู้ของเครื่องบางวิธีก็ใช้การโปรแกรมตรรกะเชิงอุปนัย

วิธีทางความน่าจะเป็นและการให้เหตุผลบนความไม่แน่นอน (Probabilistic methods for uncertain reasoning)[แก้]

ปัญหาหลายอย่างทางปัญญาประดิษฐ์ (ในการให้เหตุผล วางแผน เรียนรู้ รับรู้ และหุ่นยนต์) ต้องมีเอเยนต์ที่คอยจัดการกับความไม่สมบูรณ์หรือความไม่แน่นอนของข้อมูล นักวิจัยด้านปัญญาประดิษฐ์ได้คิดค้นเครื่องมือหลายอย่างที่มีประสิทธิภาพเพื่อแก้ไขปัญหาเหล่านี้โดยใช้วิธีทางทฤษฎีความน่าจะเป็นและเศรษฐศาสตร์

เครือข่ายแบบเบย์ เป็นเครื่องมือทั่วไปเครื่องมือหนึ่งที่สามารถใช้แก้ปัญหาได้หลายปัญหา ไม่ว่าจะเป็น การให้เหตุผล (ใช้อัลกอริทึมการอนุมานแบบเบย์) การเรียนรู้ (ใช้อัลกอริทึมหาค่าคาดหวังที่มากที่สุด) การวางแผน (ใช้เครือข่ายการตัดสินใจ) และการรับรู้ (ใช้เครือข่ายแบบเบย์พลวัต) อัลกอริทึมทางความน่าจะเป็นก็สามารถใช้กับการกรอง การทำนาย การปรับให้ราบเรียบ และการหาคำอธิบายสายข้อมูล ช่วยระบบรับรู้ให้สามารถวิเคราะห์กระบวนการต่างๆที่เกิดขึ้นและเปลี่ยนแปลงตลอดเวลาได้ (เช่น Hidden Markov model หรือ ตัวกรองคาลมาน)

ในทางเศรษฐศาสตร์ แนวคิดหนึ่งที่ถือเป็นหัวใจหลักคือ ประโยชน์ สำหรับปัญญาประดิษฐ์ เราสามารถนำค่าของประโยชน์มาวัดได้ว่าของบางอย่างจะมีค่าต่อเอเยนต์ทรงปัญญาได้อย่างไร นักวิทยาศาสตร์ได้พัฒนาเครื่องมือคณิตศาสตร์ที่แม่นยำเพื่อวิเคราะห์ว่าเอเยนต์จะตัดสินใจและวางแผนได้อย่างไร โดยใช้วิธีของ Markov เครือข่ายการตัดสินใจแบบพลวัต ทฤษฎีเกม เป็นต้น

การจัดหมวดหมู่และการเรียนรู้ทางสถิติ (Classifiers and statistical learning methods)[แก้]

การประยุกต์ใช้ปัญญาประดิษฐ์ที่ง่ายที่สุด อาจอยู่ในรูปแบบของ การจัดหมวดหมู่ ซึ่งเป็นการทำงานที่ใช้การจับคู่รูปแบบที่พบเข้ากับสิ่งที่ใกล้เคียงที่สุด การจับคู่นั้นขึ้นอยู่กับตัวอย่างที่สอน จึงทำให้เป็นหัวข้อที่น่าสนใจมากในการประยุกต์ใช้ปัญญาประดิษฐ์ ตัวอย่างสอนเหล่านี้อาจจะมาจากการสังเกตการณ์หรือเป็นรูปแบบที่ชัดเจน ในการเรียนรู้แบบมีผู้สอนนั้น รูปแบบแต่ละอย่างจะถูกจัดกำหนดให้อยู่ในประเภทบางประเภทหรือกลุ่มบางกลุ่ม การสำรวจข้อมูลและการระบุข้อมูลให้เข้ากับกลุ่มนั้นเรียกกันว่า เซ็ตข้อมูล เมื่อมีการสำรวจข้อมูลใหม่เข้ามา ข้อมูลใหม่จะถูกจัดกลุ่มตามตัวอย่างที่เคยสอนมาแล้ว

การจัดหมวดหมู่หรือกลุ่มนี้สามารถสอนกันได้หลายแบบ ไม่ว่าจะใช้วิธีการทางสถิติหรือทางการเรียนรู้ของเครื่อง วิธีการที่นิยมใช้ได้แก่ โครงข่ายประสาทเทียม วิธีเคอร์เนล support vector machine ขั้นตอนวิธีการค้นหาเพื่อนบ้านใกล้สุด k ตัว โมเดลผสมแบบเกาส์ การจัดหมวดหมู่แบบเบย์ใหม่ และต้นไม้การตัดสินใจ ประสิทธิภาพของแต่ละเครื่องมือนั้นขึ้นอยู่กับงานที่ทำแต่ละงานและคุณสมบัติของข้อมูลที่เข้ามา โดยทั่วไปแล้ว ไม่มีเครื่องมือใดที่ทำหน้าที่ได้ดีที่สุดบนทุกปัญหา

โครงข่ายประสาทเทียม (Neural networks)[แก้]

การศึกษาโครงข่ายประสาทเทียมเริ่มต้นขึ้นตั้งแต่ก่อนที่จะมีงานวิจัยทางด้านปัญญาประดิษฐ์จากผลงานของวอลเตอร์ พิตต์สและวอร์เรน แม็กคัลลอช นอกจากนี้ยังมีแฟรงก์ โรเซนแบลตต์ที่คิดค้นเพอร์เซปตรอน และพอล เวอร์โบส์ผู้คิดค้นอัลกอริทึมการแพร่กระจายย้อนกลับ

ประเภทของโครงข่ายนี้อาจะแบ่งเป็นแบบไม่เป็นวงวน และแบบเป็นวงวน โครงข่ายประสาทเทียมที่ได้รับความนิยมได้แก่เพอร์เซปตรอน โครงข่ายเพอร์เซปตรอนแบบหลายชั้น และโครงข่ายฟังก์ชันฐานรัศมี โครงข่ายประสาทเทียมสามารถปรับใช้งานได้กับการควบคุมที่ฉลาดเช่นกับหุ่นยนต์ หรือเพื่อการเรียนรู้ของเครื่องด้วยก็ได้เช่นกัน

นอกจากนี้ หากโครงข่ายประสาทเทียมมีความทรงจำเชิงเวลาแล้วก็สามารถจำสร้างแบบจำลองเชิงโครงสร้างและวิธีการของนีโอคอร์เทกซ์ของสมองได้ ซึ่งเป็นแนวคิดที่เป็นที่มาของสาขาการเรียนรู้เชิงลึกที่ได้รับความนิยมมากตั้งแต่กลางทศวรรษที่ 2000 เป็นต้นมาจากผลงานของเจฟฟรีย์ ฮินตันและรูสลาน ซาลาคัตดินอฟ

ทฤษฎีควบคุม (Control theory)[แก้]

ทฤษฎีควบคุม เป็นลูกหลานของไซเบอร์เนติกส์ สามารถนำไปประยุกต์ใช้งานได้หลากหลาย โดยเฉพาะในทางวิทยาการหุ่นยนต์

ภาษา (Languages)[แก้]

นักวิจัยทางปัญญาประดิษฐ์ได้พัฒนาภาษาพิเศษสำหรับงานวิจัย เช่น ภาษาลิสป์ และภาษาโปรล็อก

สาขาที่เกี่ยวข้องกับปัญญาประดิษฐ์[แก้]

สาขาที่มีบทบาทมากในปัจจุบัน[แก้]

วิทยาการหุ่นยนต์ (Robotics)[แก้]

  • การจะสร้างหุ่นยนต์ที่อาศัยอยู่กับมนุษย์ได้จริง ต้องใช้ความรู้ทางปัญญาประดิษฐ์ทั้งหมด นอกจากนั้นยังต้องใช้ความรู้อื่น ๆ ทางเครื่องกล เพื่อสร้างสรีระให้หุ่นยนต์สามารถเคลื่อนไหวได้เช่นเดียวกับมนุษย์
  • ในวงการวิทยการหุ่นยนต์ เขาก็ถือว่าปัญญาประดิษฐ์เป็นสาขาของเขาเช่นกัน

ขั้นตอนวิธีเชิงพันธุกรรม (Genetic_algorithm)[แก้]

  • เป็นการประยุกต์นำแนวความคิดทางด้านการวิวัฒนาการที่มีอยู่ในธรรมชาติ มาใช้ในการแก้ปัญหาทางคณิตศาสตร์และคอมพิวเตอร์
  • เป็นขั้นตอนวิธีเชิงสุ่ม (stochastic) (ไม่ได้คำตอบเดิมทุกครั้งที่แก้ปัญหาเดิม)
  • มักประยุกต์ใช้ในปัญหาการหาค่าที่เหมาะสมที่สุด (optimization) ที่ไม่สามารถแก้ได้ด้วยวิธีมาตรฐานทางคณิตศาสตร์อย่างมีประสิทธิภาพ
  • แนวคิดที่นำเอาหลักการวิวัฒนาการมาใช้นี้ มีรูปแบบอื่นอีกหลายรูปแบบ เช่น การโปรแกรมเชิงพันธุกรรม (genetic programming) และ evolution strategy อย่างไรก็ตามเทคนิคเหล่านี้มีแนวความคิดหลักเหมือนกัน ต่างกันในรายละเอียดปลีกย่อยเท่านั้น

โครงข่ายประสาทเทียม (Neural network)[แก้]

ชีวิตประดิษฐ์ (Artificial life)[แก้]

  • เป็นการศึกษาพฤติกรรมของชีวิตเทียมที่เราออกแบบและสร้างขึ้น

ปัญญาประดิษฐ์แบบกระจาย (Distributed Artificial Intelligence)[แก้]

สาขาอื่นที่ยังไม่มีบทบาทมากนัก[แก้]

ความฉลาดแบบกลุ่ม (Swarm Intelligence)[แก้]

Artificial being[แก้]

ดูเพิ่ม[แก้]

อ้างอิง[แก้]

  1. Stuart J. Russell, Peter Norvig (2003) "Artificial Intelligence: A Modern Approach" (2nd Edition), Prentice Hall, New Jersey, ISBN 0-13-790395-2.
  2. Dartmouth conference:
    • McCorduck 2004, pp. 111–136
    • Crevier 1993, pp. 47–49, who writes "the conference is generally recognized as the official birthdate of the new science."
    • Russell & Norvig 2003, p. 17, who call the conference "the birth of artificial intelligence."
    • NRC 1999, pp. 200–201
  1. รศ. ดร. บุญเสริม กิจศิริกุล (2003) "ปัญญาประดิษฐ์ เอกสารคำสอนวิชา 2110654", http://www.cp.eng.chula.ac.th/~boonserm/teaching/artificial.htm .
  2. รศ. ดร. ประภาส จงสถิตย์วัฒนา เอกสารการสอนเกี่ยวกับ โปรแกรมเชิงพันธุกรรม , ขั้นตอนวิธีเชิงพันธุกรรม และเอกสารอื่น ๆ ที่เกี่ยวข้อง, http://www.cp.eng.chula.ac.th/~piak/ .

แหล่งข้อมูลอื่น[แก้]

ทั่วไป[แก้]

กลุ่มวิจัย[แก้]

หน่วยงานและองค์กรที่เกี่ยวข้องกับ AI[แก้]