การเรียนรู้เชิงลึก

จากวิกิพีเดีย สารานุกรมเสรี

การเรียนรู้เชิงลึก (อังกฤษ: Deep learning) เป็นสาขาของการเรียนรู้ของเครื่อง พื้นฐานของการเรียนรู้เชิงลึกคือ อัลกอริทึมที่พยายามจะสร้างแบบจำลองเพื่อแทนความหมายของข้อมูลในระดับสูงโดยการสร้างสถาปัตยกรรมข้อมูลขึ้นมาที่ประกอบไปด้วยโครงสร้างย่อยๆหลายอัน และแต่ละอันนั้นได้มาจากการแปลงที่ไม่เป็นเชิงเส้น[1]

การเรียนรู้เชิงลึก อาจมองได้ว่าเป็นวิธีการหนึ่งของการเรียนรู้ของเครื่องที่พยายามเรียนรู้วิธีการแทนข้อมูลอย่างมีประสิทธิภาพ ตัวอย่างเช่น รูปภาพภาพหนึ่ง สามารถแทนได้เป็นเวกเตอร์ของความสว่างต่อจุดพิกเซล หรือมองในระดับสูงขึ้นเป็นเซ็ตของขอบของวัตถุต่างๆ หรือมองว่าเป็นพื้นที่ของรูปร่างใดๆก็ได้ การแทนความหมายดังกล่าวจะทำให้การเรียนรู้ที่จะทำงานต่างๆทำได้ง่ายขึ้น ไม่ว่าจะเป็นการรู้จำใบหน้าหรือการรู้จำการแสดงออกทางสีหน้า การเรียนรู้เชิงลึกถือว่าเป็นวิธีการที่มีศักยภาพสูงในการจัดการกับฟีเจอร์สำหรับการเรียนรู้แบบไม่มีผู้สอนหรือการเรียนรู้แบบกึ่งมีผู้สอน

นักวิจัยในสาขานี้พยายามจะหาวิธีการที่ดีขึ้นในการแทนข้อมูลแล้วสร้างแบบจำลองเพื่อเรียนรู้จากตัวแทนของข้อมูลเหล่านี้ในระดับใหญ่ บางวิธีการก็ได้แรงบันดาลใจมาจากสาขาประสาทวิทยาขั้นสูง โดยเฉพาะเรื่องกระบวนการตีความหมายในกระบวนการประมวลผลข้อมูลในสมอง ตัวอย่างของกระบวนการที่การเรียนรู้เชิงลึกนำไปใช้ได้แก่ การเข้ารหัสประสาท อันเป็นกระบวนการหาความสัมพันธ์ระหว่างตัวกระตุ้นกับการตอบสนองของเซลล์ประสาทในสมอง

นักวิจัยด้านการเรียนรู้ของเครื่องได้เสนอสถาปัตยกรรมการเรียนรู้หลายแบบบนหลักการของการเรียนรู้เชิงลึกนี้ ได้แก่ โครงข่ายประสาทเทียมแบบลึก โครงข่ายประสาทเทียมแบบม้วนลึก โครงข่ายความเชื่อแบบลึก และโครงข่ายประสาทเทียมแบบวนซ้ำ ซึ่งมีการนำมาใช้งานอย่างแพร่หลายในทางคอมพิวเตอร์วิทัศน์ การรู้จำเสียงพูด การประมวลผลภาษาธรรมชาติ การรู้จำเสียง และชีวสารสนเทศศาสตร์

อ้างอิง[แก้]

  1. L. Deng and D. Yu (2014) "Deep Learning: Methods and Applications" http://research.microsoft.com/pubs/209355/DeepLearning-NowPublishing-Vol7-SIG-039.pdf