หลักเกณฑ์โลปีตาล

จากวิกิพีเดีย สารานุกรมเสรี
ตัวอย่างของหลักเกณฑ์โลปีตาลของ f(x) = sin(x) และ g(x) = −0.5x: ฟังก์ชัน h(x) = f(x)/g(x) ไม่ได้กำหนดที่ x = 0 แต่สามารถทำให้สมบูรณ์เป็นฟังก์ชันต่อเนี่องในทั้งหมดของ R โดยกำหนดให้ h(0) = f(0)/g(0) = −2.

ในแคลคูลัส หลักเกณฑ์โลปีตาล (l'Hôpital's rule) ใช้อนุพันธ์เพื่อช่วยในการคำนวณลิมิตที่อยู่ในรูปแบบยังไม่กำหนด (indeterminate forms) หลักเกณฑ์นี้มักนำมาใช้ในการเปลี่ยนรูปแบบยังไม่กำหนด เป็นรูปแบบกำหนด เพื่อให้ง่ายต่อการคำนวณลิมิต

ภาพรวม[แก้]

เมื่อต้องการหาค่าลิมิตของผลหาร f(x)/g(x) ซึ่งทั้งตัวเศษและตัวส่วนมีค่าเข้าใกล้ 0 หรือ ตัวส่วนมีค่าเข้าใกล้อนันต์ หลักเกณฑ์โลปีตาล กล่าวว่า การหาอนุพันธ์ของตัวเศษและตัวส่วน จะไม่ทำให้ลิมิตเปลี่ยนแปลง อย่างไรก็ตาม เรามักนิยมแปลงผลหารให้อยู่ในรูปแบบกำหนด เพื่อให้ง่ายต่อการคำนวณ

หรือกล่าวว่า ถ้า และ

แล้ว

โปรดสังเกตเงื่อนไขที่ว่าลิมิต f/g มีอยู่จริง บางครั้งการหาอนุพันธ์อาจได้ผลลัพธ์ที่หาลิมิตไม่ได้ในกรณีนี้หลักเกณฑ์โลปีตาลไม่ครอบคลุม

ตัวอย่างที่เป็นเลข

ให้ทำการดิฟ เศษและส่วน คือ ดิฟเศษ 2x - 4 = 2 ดิฟส่วน x - 2 = 1

เพราะฉะนั้น คำตอบเท่ากับ