พหุนาม

จากวิกิพีเดีย สารานุกรมเสรี
กราฟของฟังก์ชันพหุนามดีกรีสาม

พหุนาม ในคณิตศาสตร์ หมายถึง นิพจน์ที่สร้างจากตัวแปรอย่างน้อยหนึ่งตัวและสัมประสิทธิ์ โดยใช้การดำเนินการแค่ การบวก การลบ การคูณ และการยกกำลังโดยที่เลขชี้กำลังเป็นจำนวนเต็มที่ไม่เป็นลบเท่านั้น ตัวอย่างของพหุนามตัวแปรเดียวที่มี x เป็นตัวแปร เช่น x2 − 4x + 7 ซึ่งเป็นฟังก์ชันกำลังสอง

พหุนามสามารถนำไปใช้ในสาขาต่าง ๆ ของคณิตศาสตร์และวิทยาศาสตร์ได้อย่างกว้างขวาง ตัวอย่างเช่น สมการพหุนาม ซึ่งสามารถนำไปใช้ในการแก้ปัญหาได้อย่างกว้างขวาง จากโจทย์ปัญหาพื้นฐาน ไปจนถึงปัญหาที่ซับซ้อนทางวิทยาศาสตร์ และยังใช้ในการนิยาม ฟังก์ชันพหุนาม ซึ่งนำไปใช้ตั้งแต่พื้นฐานของเคมีและฟิสิกส์ ไปจนถึงเศรษฐศาสตร์และสังคมศาสตร์ รวมถึงการนำไปใช้ในแคลคูลัส และการวิเคราะห์เชิงตัวเลข ซึ่งคล้ายคลึงกับฟังก์ชันต่าง ๆ ในคณิตศาสตร์ขั้นสูงนั้น พหุนามยังใช้ในการสร้างวงล้อพหุนาม และความหลากหลายทางพีชคณิต และเป็นแนวคิดสำคัญในพีชคณิต และเรขาคณิตเชิงพีชคณิตอีกด้วย

ความหมายและที่มา[แก้]

สัญกรณ์และศัพท์บัญญัติ[แก้]

บทนิยาม[แก้]

เลขคณิตของพหุนาม[แก้]

ตัวอย่างเช่น นิพจน์ y (2 x z^3 - 4) x - 2 + (0.9 x + z) y เป็นพหุนาม (เนื่องจาก z^3 เป็นการเขียนย่อจาก z\cdot z\cdot z) แต่นิพจน์  {1 \over x^2 + 1} ไม่ใช่พหุนาม เนื่องจากมีการหาร เช่นเดียวกับ นิพจน์  (5 + y) ^ x เนื่องจากไม่สามารถเขียนให้อยู่ในรูปของการคูณกันที่ไม่ขึ้นกับค่าของตัวแปร x ได้

นอกจากนี้ ยังมีการนิยาม พหุนาม ในรูปแบบจำกัด กล่าวคือ พหุนามคือนิพจน์ที่เป็นผลรวมของผลคูณระหว่างตัวแปรกับค่าคงที่ ยกตัวอย่างเช่น  2 x^2 y z^3 - 3.1 x y + y z - 2 อย่างไรก็ตาม ข้อจำกัดนี้เป็นเพียงข้อจำกัดที่ผิวเผิน เนื่องจากสามารถใช้กฎการแจกแจงแปลงพหุนามภายใต้นิยามแรกให้เป็นพหุนามภายใต้นิยามที่สองได้ ในการใช้งานทั่วไปมักไม่แยกแยะความแตกต่างทั้งสอง นอกจากนี้ในบริบททั่วไปมักนิยมถือว่าโดยทั่วไปพหุนามจะอยู่ในรูปแบบจำกัดนี้ แต่เมื่อต้องการแสดงว่าอะไรเป็นพหุนาม มักใช้รูปแบบแรกเนื่องจากสะดวกมากกว่า

ฟังก์ชันพหุนาม[แก้]

ฟังก์ชันพหุนาม คือฟังก์ชันที่นิยามด้วยพหุนาม ตัวอย่างเช่น ฟังก์ชัน f นิยามด้วย f (x) = x3x เป็นฟังก์ชันพหุนาม ฟังก์ชันพหุนามเป็นฟังก์ชันเรียบประเภทหนึ่งที่สำคัญ นั่นคือ สินชัยเป็นฟังก์ชันที่มีอนุพันธ์ทุก ๆ อันดับที่จำกัด

แม่แบบ:พหุนาม