แคลคูลัสกับพหุนาม

จากวิกิพีเดีย สารานุกรมเสรี
หัวข้อที่เกี่ยวข้องกับแคลคูลัส

ทฤษฎีบทมูลฐานของแคลคูลัส | ฟังก์ชัน | ลิมิตของฟังก์ชัน | ความต่อเนื่อง | แคลคูลัสกับพหุนาม | ทฤษฎีบทค่าเฉลี่ย | แคลคูลัสเวกเตอร์ | แคลคูลัสเทนเซอร์

อนุพันธ์

กฎผลคูณ | กฎผลหาร | กฎลูกโซ่ | อนุพันธ์โดยปริยาย | ทฤษฎีบทของเทย์เลอร์

ปริพันธ์
การหาปริพันธ์โดยการแทนค่า | การหาปริพันธ์เป็นส่วน | การหาปริพันธ์โดยการแทนที่ฟังก์ชันตรีโกณมิติ | การหาปริพันธ์แบบจาน | การหาปริพันธ์ด้วยเชลล์ | การหาปริพันธ์แบบต่าง ๆ

แคลคูลัสกับพหุนาม ในคณิตศาสตร์ พหุนามอาจเป็นฟังก์ชันที่ง่ายที่สุดในการทำแคลคูลัส อนุพันธ์ และปริพันธ์เป็นไปตามกฎต่อไปนี้

ดังนั้นอนุพันธ์ของ คือ และปริพันธ์ของ คือ

บทพิสูจน์[แก้]

เนื่องจากการหาอนุพันธ์เป็น การแปลงเชิงเส้น จะได้

ดังนั้นจะต้องหา สำหรับ จำนวนธรรมชาติ ใดๆ ซึ่งมีการพิสูจน์โดยอุปนัย โดยใช้ กฎผลคูณ ซึ่งขึ้นอยู่กับกรณีที่ เท่านั้น

นัยทั่วไป[แก้]

เป็นจริงทุกค่า k ที่ xk มีความหมาย หรือ ทุกค่า k ที่เป็นจำนวนตรรกยะที่ xk มีการนิยามไว้

นัยทั่วไปนี้ก็เป็นจริงสำหรับการหาปริพันธ์ของพนุนามเช่นเดียวกัน

ถ้ามีพนุนามที่ตัวคูณไม่ใช่จำนวนจริงหรือจำนวนเชิงซ้อน (เช่นอาจเป็น จำนวนเต็ม หรือตัวเลขมอดุโลของจำนวนเฉพาะ) ก็สามารถนิยามอนุพันธ์จากความสัมพันธ์ข้างบน

อ้างอิง[แก้]

  • Larson, Ron; Hostetler, Robert P.; and Edwards, Bruce H. (2003). Calculus of a Single Variable: Early Transcendental Functions (3rd edition). Houghton Mifflin Company. ISBN 0-618-22307-X.