e (ค่าคงตัว)

จากวิกิพีเดีย สารานุกรมเสรี

e เป็นค่าคงตัวทางคณิตศาสตร์ ที่เป็นฐานของลอการิทึมธรรมชาติ มีค่าประมาณ 2.71828[1] สามารถนิยามได้หลายวิธี เช่น e เป็นจำนวนจริงที่สอดคล้องกับเงื่อนไขที่ว่า ฟังก์ชัน มีค่าเท่ากับความชัน (derivative) ของตัวเองสำหรับทุกจำนวนจริง x หรือกล่าวได้ว่า อนุพันธ์ของฟังก์ชันดังกล่าวมีค่าเท่ากับตัวมันเองเสมอ ซึ่งฟังก์ชันที่สอดคล้องกับเงื่อนไขนี้จะอยู่ในรูป เมื่อ k เป็นค่าคงตัวใด ๆ นอกจากนี้ e ยังมีค่าเท่ากับ ซึ่งเป็นสมการที่พบในการคำนวณเกี่ยวกับดอกเบี้ยทบต้น (Compound interest) นอกจากนี้ สามารถคำนวณได้โดยสูตรอนุกรมอนันต์ (Infinite series) นี้:[2]

ค่าคงที่ สามารถทำให้อยู่ในรูปสมการได้หลายรูปแบบ ยกตัวอย่างเช่น ฟังชั่นต์ เรียกว่า ฟังก์ชันเอกซ์โพเนนเชียล (Exponential Function) เป็นฟังก์ชันที่มีค่าเท่ากับอนุพันธ์ (Derivative) ของตัวเอง มีเอกลักษณ์แตกต่างจากฟังก์ชันอื่น

ส่วนลอการิทึมธรรมชาติ (Natural logarithm) หรือ ลอการิทึมฐาน e (Logarithm to base e) คือ ฟังก์ชันที่ผกผันกับฟังก์ชันเอ็กโพเนเนเชียล ลอการิทึมธรรมชาติของเลขที่มากกว่า 1 (k>1) สามารถหาได้โดยตรงจากพื้นที่ใต้กราฟของฟังก์ชัน ระหว่าง x=1 และ x=k ยกตัวอย่างเช่น เมื่อ k = e พื้นที่ใต้กราฟระหว่าง 1 และ e จะเท่ากับ ln(e) (ลอการิทึมธรรมชาติของ e) หรือ 1

กราฟสมการ y = 1/x ในที่นี้ e คือตัวเลขเดียวจากเลขหนึ่ง ที่ทำให้พื้นที่ใต้กราฟมีค่าเท่ากับ 1

e มักแรียกกันว่า จำนวนของออยเลอร์ (Euler's number) (ระวังสับสนกับ γ, ค่าคงตัวออยเลอร์-แมสเชโรนี) ตามนักคณิตศาสตร์ชาวสวิส เลออนฮาร์ด ออยเลอร์ (Leonhard Euler) ผู้ริเริ่มการใช้สัญลักษณ์ e เพื่อแทนจำนวนนี้ และเป็นคนแรกที่ศึกษาสมบัติของจำนวนนี้อย่างละเอียด e ยังมีอีกชื่อหนึ่งว่า คือค่าคงตัวเนเปียร์ ตามจอห์น เนเปียร์ (John Napier) นักคณิตศาสตร์ชาวสก็อตผู้ค้นพบลอการิทึม อนึ่งค่า e ถูกค้นพบครั้งแรกโดย ยาค็อบ แบร์นูลลี (Jacob Bernoulli) นักคณิตศาสตร์ชาวสวิส ในการศึกษาเรื่องดอกเบี้ยทบต้น[3]

e เป็นจำนวนที่มีความสำคัญมากในคณิตศาสตร์ โดย e เป็นจำนวนอตรรกยะ และ จำนวนอดิศัย เหมือนกับค่า โดยค่าคงตัวทั้งสองนี้ ประกอบกับ 0 1 และ มีบทบาทที่สำคัญมากในวิชาคณิตศาสตร์ และ มักปรากฏตัวในสมหารทางคณิตศาสตร์ โดยมีสมการหนึ่งที่รวมค่าคงตัวทั้งห้านี้เอาไว้ในสมการเดียว เรียกว่า เอกลักษณ์ของออยเลอร์ อันได้ชื่อว่าเป็นสมการที่สวยงามที่สุดในคณิดศาสตร์[4]

ค่า e ที่ปัดเป็นเลขทศนิยม 50 หลัก เท่ากับ 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995...(ลำดับ A001113 ใน OEIS).

การประยุกต์ใช้ e[แก้]

การคิดดอกเบี้ยทบต้น[แก้]

ยาค็อบ แบร์นูลลี (Jacob Bernoulli)ค้นพบค่า ในปี 1683 ในการศึกษาปัญหาเกี่ยวกับดอกเบี้ยทบต้น ลักษณะดังนี้:

สมมุติว่าบัญชีธนาคารมีเงิน 1 บาทและได้รับดอกเบี้ยร้อยละ 100 ต่อปี แน่นอนว่าถ้าดอกเบี้ยมีการทบต้นทุก ๆ ปี สิ้นปีนี้ในบัญชีนี้จะมีเงินอยู่ 2 บาท แต่หากดอกเบี้ยมีการทบต้นด้วยความถี่มากกว่านี้ จำนวนเงินในบัญขีจะเป็นอย่างไร?

หากทบทุก 6 เดือน จะได้สองครั้ง ครั้งละ 50% นั่นคือ 1 บาท ตอนแรกจะคูณ 1.5 สองครั้ง ได้ 1.52 = 2.25 บาท หากทบทุก 3 เดือนก็จะคูณ 1.25 สี่ครั้ง ได้ 1.254 = 2.44140625 บาท หากทบรายเดือนก็จะได้ (1+1/12)12 = 2.613035... บาท และยิ่งถี่ขึ้นก็จะได้เงินมากขึ้นไปอีก โดยถ้าทบต้น ครั้งต่อปี จะได้ดอกเบี้ยครั้งละ และเมื่อจบปีก็จะมีเงิน บาท

แบร์นูลลีสังเกตว่าการเพิ่มขึ้นเมื่อทบต้นถี่ขึ้นนี้มีขีดจำกัด โดยเมื่อทบต้นอย่างต่อเนื่องจะมีเงินเมื่อจบปีมากที่สุดที่เป็นไปได้ด้วยดอกเบี้ยอัตรานี้ ก็คือ ค่า นั่นเอง ในทำนองเดียวกัน บัญชีใด ๆ ที่เริ่มต้นด้วยเงิน บาท และได้ดอกเบี้ยอย่างต่อเนื่องด้วยอัตรา ต่อปี จะมีเงินจำนวน เมื่อเวลาผ่านไป ปี (ในที่นี้ R เป็นจำนวนทศนิยมของอัตราดอกเบี้ย เสมือนการใช้ % ยกตัวอย่างเช่น ดอกเบี้ยเงินกู้ 5%, R = 0.05)

การแจกแจงปรกติมาตรฐาน (สถิติศาสตร์)[แก้]

การแจกแจงปรกติ (Normal distribution) ที่มีค่า μ = 0 และ σ 2 = 1 จะถูกเรียกว่า การแจกแจงปรกติมาตรฐาน (standard normal distribution) โดยใช้ฟังก์ชันความหนาแน่นของความน่าจะเป็น (Probability density function):[5]

เมื่อ เป็นส่วนเบี่ยงเบนมาตรฐานและ เป็นค่าเฉลี่ย

ความน่าจะเป็น[แก้]

ในวิชาความน่าจะเป็น พบ e ในปัญหาเกี่ยวกับการสลับคู่ ดังนี้[6]: สมมุติว่ามีแขกร่วมงานเลี้ยง n คน เดินเข้าประตูมาแล้วฝากหมวกของตนเองไว้กับคนใช้ ซึ่งนำหมวกเหล่านี้ไปใส่ในกล่อง n ใบ โดยกล่องแต่ละใบมีชื่อของแขกแต่ละคน แต่คนใช้ไม่ทราบชื่อของแขกแต่ละคน จึงนำหมวกเหล่านี้ใส่ในกล่องอย่างสุ่ม ความน่าจะเป็นที่ไม่มีหมวกใบไหนเลย ที่อยู่ในกล่องที่ถูกต้อง คิดเป็น

ซึ่งเมื่อจำนวนแขก เพิ่มสู่อนันต์แล้ว ความน่าจะเป็นนี้จะลู่เข้าหา

การประมาณของสเตอร์ลิง[แก้]

e ใช้ในการประมาณค่าของแฟกตอเรียลของจำนวนค่ามากได้ตามสูตร

ซึ่งแปลว่า

แคลคูลัส[แก้]

กราฟแสดงอนุพันธ์ของฟังก์ชัน f(x) = ex ที่จุด x = 0

หนึ่งในความสำคัญของการนิยามค่า คือการนำไปใช้ในการหาอนุพันธ์หรือปริพันธ์ของฟังก์ชันเอ็กซ์โพเนนเชียลและฟังก์ชันลอการิทึม โดยเมื่อพยายามคำนวณอนุพันธ์ของฟังก์ชัน จากนิยามของอนุพันธ์

จะสังเกตได้ว่าลิมิตในวงเล็บไม่ขึ้นกับ แต่ขึ้นกับฐาน เพียงอย่างเดียว โดยที่ คือจำนวนที่ทำให้ลิมิตนี้เป็น 1 สอดคล้องกับสมบัติที่ว่า

e จึงเป็นฐานที่เหมาะสมต่อการทำแคลคูลัส เพราะเมื่อเลือกใช้เป็นฐานแล้วทำให้ง่ายต่อการคำนวณอนุพันธ์

ในทำนองเดียวกัน หากพยายามคำนวณอนุพันธ์ของฟังก์ชัน จะได้

โดย

ดังนั้นถ้าแทน เป็น จะได้ว่าลอการิทึมในผลเป็น 1 ดังนั้น

ลอการิทึมฐาน นี้เรียกว่าลอการิทึมธรรมชาติและตามปกติเขียนแทนด้วย ดังนั้นจึงเห็นได้เช่นเดียวกันว่า เป็นฐานที่สะดวกต่อแคลคูลัส

จากคุณสมบัติที่ มี เป็นอนุพันธ์ นำไปสู่วิธีนิยาม อีกวิธีคือ

ทฤษฎีจำนวน[แก้]

เป็นจำนวนอตรรกยะและอดิศัย นั่นแปลว่า ไม่สามารถเขียนเป็นเศษส่วนที่เศษและส่วนเป็นจำนวนเต็มได้ และไม่เป็นคำตอบของพหุนามที่มีสัมประสิทธิ์เป็นจำนวนเต็ม ออยเลอร์เป็นคนแรกที่พิสูจน์ว่า เป็นจำนวนอตรรกยะ โดยการแสดงว่า เขียนเป็นเศษส่วนต่อเนื่องอนันต์ได้[7] สำหรับการที่ เป็นจำนวนอดิศัยนั้นเป็นผลโดยตรงจากทฤษฎีบทลินเดอมาน-ไวเออร์ชตราส โดยผู้พิสูจน์ครั้งแรกว่า เป็นจำนวนอดิศัยคือชาลส์ แอร์มิต

จำนวนเชิงซ้อน[แก้]

ในระบบจำนวนจริง ฟังก์ชันเอกซ์โพเนนเชียล สามารถเขียนเป็นอนุกรมเทย์เลอร์ได้เป็น

ซึ่งอนุกรมนี้คงคุณสมบัติหลายประการของ ไว้ในระนาบเชิงซ้อน จึงถือเป็นนิยามของฟังก์ชัน สำหรับจำนวนเชิงซ่อนใด ๆ

จากการเทียบเคียงสมการนี้กับอนุกรมของ และ นำไปสู่สูตรของออยเลอร์ (ซึ่งมีเอกลักษณ์ออยเลอร์ เป็นกรณีพิเศษที่ ) เมื่อนำสูตรของออยเลอร์ไปยกกำลังจะได้ทฤษฎีบทเดอมัวร์

ดูเพิ่ม[แก้]

อ้างอิง[แก้]

  1. สถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี (สสวท.) (2013). "natural logarithms [Napierian logarithms] ลอการิทึมฐาน e". พจนานุกรมศัพท์วิทยาศาสตร์-คณิตศาสตร์ สสวท. อังกฤษ-ไทย. บริษัท อินเตอร์เอดูเคชั่น ซัพพลายส์ จำกัด. p. 79. ISBN 978-616-7736-02-0.
  2. Encyclopedic Dictionary of Mathematics 142.D
  3. O'Connor, J J; Robertson, E F. "The number e". MacTutor History of Mathematics.
  4. Pickover, Clifford A. (2009). "Euler's Number, e". The Math Book. p. 166. ISBN 978-1-4027-8829-1.
  5. รองศาสตราจารย์ ดร.ปิยะ โควินท์ทวีวัฒน์ (2015). มหาวิทยาลัยราชภัฏนครปฐม. "การสื่อสารดิจิตัล ตัวแปรสุ่มและกระบวนการสุ่ม".
  6. Grinstead, C.M. and Snell, J.L.Introduction to probability theory เก็บถาวร 2011-07-27 ที่ เวย์แบ็กแมชชีน (published online under the GFDL), p. 85.
  7. Sandifer, Ed (กุมภาพันธ์ 2006). "How Euler Did It: Who proved e is irrational?" (PDF). คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2014-02-23. สืบค้นเมื่อ 2019-05-03.{{cite web}}: CS1 maint: bot: original URL status unknown (ลิงก์) เก็บถาวร 2014-02-23 ที่ เวย์แบ็กแมชชีน