กฎผลหาร

จากวิกิพีเดีย สารานุกรมเสรี
หัวข้อที่เกี่ยวข้องกับแคลคูลัส

ทฤษฎีบทมูลฐานของแคลคูลัส | ฟังก์ชัน | ลิมิตของฟังก์ชัน | ความต่อเนื่อง | แคลคูลัสกับพหุนาม | ทฤษฎีบทค่าเฉลี่ย | แคลคูลัสเวกเตอร์ | แคลคูลัสเทนเซอร์

อนุพันธ์

กฎผลคูณ | กฎผลหาร | กฎลูกโซ่ | อนุพันธ์โดยปริยาย | ทฤษฎีบทของเทย์เลอร์

ปริพันธ์
การหาปริพันธ์โดยการแทนค่า | การหาปริพันธ์เป็นส่วน | การหาปริพันธ์โดยการแทนที่ฟังก์ชันตรีโกณมิติ | การหาปริพันธ์แบบจาน | การหาปริพันธ์ด้วยเชลล์ | การหาปริพันธ์แบบต่าง ๆ

กฎผลหาร (อังกฤษ: Quotient rule) เป็นกฎในแคลคูลัส คือวิธีการหาอนุพันธ์ของฟังก์ชัน ซึ่งเป็นผลหาร ของอีกสองฟังก์ชัน ซึ่งหาอนุพันธ์ได้ ถ้าฟังก์ชันที่เราต้องการหาอนุพันธ์ f(x) สามารถเขียนในรูป

และ h(x) ≠ 0; ดังนั้น กฎนี้กล่าวว่า อนุพันธ์ของ g(x) / h(x) เท่ากับ ตัวส่วน คูณกับ อนุพันธ์ของ ตัวเศษ ลบกับ ตัวเศษ คูณกับอนุพันธ์ของ ตัวส่วน ทั้งหมดหารด้วยกำลังสองของตัวส่วน ดังนี้

หรือโดยละเอียดกว่านี้แล้ว สำหรับ x ใดๆ ในเซตเปิด ที่มีจำนวน a และ h(a) ≠ 0 และทั้ง g '(a) และ h '(a) หาค่าได้ ดังนั้น f '(a) จะหาค่าได้ดังนี้

ตัวอย่าง[แก้]

อนุพันธ์ของ คือ:

อนุพันธ์ของ (เมื่อ ≠ 0) คือ:

บทพิสูจน์[แก้]

จากผลหารผลต่างของนิวตัน[แก้]

สมมุติให้
โดยที่ ≠ 0 และ และ เป็นฟังก์ชันที่หาอนุพันธ์ได้

จากกฎผลคูณ[แก้]

สมมุติให้

ที่เหลือก็มีเพียงจัดรูปของสมการให้เทอม เป็นเทอมเดียวด้านซ้าย และกำจัดเทอม ออกจากด้านขวาของสมการ

ดูเพิ่ม[แก้]