กณิกนันต์

จากวิกิพีเดีย สารานุกรมเสรี

กณิกนันต์ (อังกฤษ: Infinitesimals) คือคำศัพท์ใช้อธิบายแนวคิดของวัตถุที่มีขนาดเล็กมากๆ จนไม่สามารถมองเห็นหรือตรวจวัดได้ ถ้ากล่าวโดยทั่วไป วัตถุกณิกนันต์คือวัตถุที่มีขนาดเล็กจนไม่สามารถหาวิธีตรวจวัดได้ แต่ก็ไม่ได้เป็นศูนย์ มันเล็กมากจนยากจะแยกจากศูนย์ได้ด้วยวิธีการใดๆ ที่มีอยู่

ผู้ก่อตั้งแคลคูลัสกณิกนันต์ ได้แก่ แฟร์มาต์, ไลบ์นิซ, นิวตัน, ออยเลอร์, คอชี และคนอื่นๆ ได้ทำการคำนวณด้วยแนวคิดกณิกนันต์และสามารถหาผลลัพธ์ที่ถูกต้องได้สำเร็จ

ประวัติของกณิกนันต์[แก้]

ก่อนหน้านี้เคยมีการตั้งข้อสังเกตและอภิปรายเกี่ยวกับจำนวนที่เล็กมากๆ โดยสำนักศึกษาเอเลียทิคส์ แต่อาร์คิมิดีสเป็นคนแรกที่เสนอคำนิยามที่มีตรรกะอย่างจริงจังในงานเขียนเรื่อง ระเบียบวิธีเกี่ยวกับทฤษฎีบทกลศาสตร์[1] จากคุณสมบัติแบบอาร์คิมิดีส นิยามไว้ว่า จำนวน x จะเป็นจำนวนอนันต์ถ้าสอดคล้องตามเงื่อนไข |x|>1, |x|>1+1, |x|>1+1+1, ... และจะเป็นจำนวนกณิกนันต์ถ้า x≠0 เงื่อนไขคล้ายคลึงกันนี้ใช้ได้กับ 1/x และจำนวนเต็มที่เป็นส่วนกลับด้วย ระบบจำนวนเช่นนี้กล่าวว่ามีคุณสมบัติแบบอาร์คิมิดีสถ้ามันไม่มีสมาชิกที่เป็นจำนวนอนันต์หรือจำนวนกณิกนันต์เลย ในระบบคณิตศาสตร์ของกรีกโบราณ 1 เป็นตัวแทนของความยาวช่วงหนึ่ง ใช้เป็นหน่วยนับอย่างไม่เป็นทางการนัก


อ้างอิง[แก้]

  1. Archimedes, The Method of Mechanical Theorems; see Archimedes Palimpsest