สมการเชิงอนุพันธ์

จากวิกิพีเดีย สารานุกรมเสรี

สมการเชิงอนุพันธ์ (Differential equation) หมายถึง สมการที่มีอนุพันธ์ต่างๆของฟังก์ชันที่ไม่ทราบค่า (unknown function) หนึ่งฟังก์ชันหรือมากกว่าหนึ่งฟังก์ชันปรากฏอยู่ คำว่า Differential equation (aequatio differentialis) เริ่มใช้โดย ไลน์นิตซ์ ในปี ค.ศ. 1676

เป็นรูปแบบสมการหนึ่งในคณิตศาสตร์ เป็นพื้นฐานที่สำคัญในสาขาคณิตศาสตร์ประยุกต์ ในทางวิศวกรรมศาสตร์ และวิทยาศาสตร์ เพราะว่ากฎเกณฑ์และปัญหาต่างๆ ในสาขาวิขาเหล่านี้ล้วนพิจารณาเป็นสมการคณิตศาสตร์ที่อยู่ในรูปของสมการเชิงอนุพันธ์แทบทั้งสิ้น เช่นกฎการเคลื่อนที่ของนิวตัน ปัญหาของการนำความร้อนในแท่งโลหะ การหาปะจุหรือกระแสในวงจรไฟฟ้า เหล่านี้เป็นต้น

ประเภทของสมการเชิงอนุพันธ์[แก้]

  • สมการเชิงอนุพันธ์สามัญ (Ordinary Differential Equation) หมายถึงสมการเชิงอนุพันธ์ที่มีฟังก์ชันไม่ทราบค่าของตัวแปรอิสระเพียงตัวเดียว
  • สมการเชิงอนุพันธ์ย่อย (Partial Differential Equation) หมายถึงสมการเชิงอนุพันธ์ที่มีฟังก์ชันไม่ทราบค่าของตัวแปรอิสระมากกว่าหนึ่งตัวแปร

สมการเชิงอนุพันธ์อันดับหนึ่งและดีกรีหนึ่ง[แก้]