กลศาสตร์ดั้งเดิม

จากวิกิพีเดีย สารานุกรมเสรี

กลศาสตร์ดั้งเดิม เป็นหนึ่งในสองวิชาที่สำคัญที่สุดของกลศาสตร์ (โดยอีกวิชาหนึ่ง คือ กลศาสตร์ควอนตัม) ซึ่งอธิบายถึงการเคลื่อนที่ของวัตถุต่าง ๆ ภายใต้อิทธิพลจากระบบของแรง โดยวิชานี้ถือเป็นวิชาที่ครอบคลุมในด้านวิทยาศาสตร์ วิศวกรรม และเทคโนโลยีมากที่สุดวิชาหนึ่ง อีกทั้งยังเป็นวิชาที่เก่าแก่ ซึ่งมีการศึกษาในการเคลื่อนที่ของวัตถุตั้งแต่สมัยโบราณ โดยกลศาสตร์ดั้งเดิมรู้จักในวงกว้างว่า กลศาสตร์นิวตัน

ในทางฟิสิกส์ กลศาสตร์ดั้งเดิมอธิบายการเคลื่อนที่ของวัตถุขนาดใหญ่โดยแปลงการเคลื่อนที่ต่าง ๆ ให้กลายเป็นเครื่องจักรกล และครอบคลุมไปยังทุกสถานะของสสาร ทั้งของแข็ง ของเหลว และแก๊ส โดยจะให้ผลลัพธ์ที่มีความแม่นยำสูง แต่เมื่อวัตถุมีขนาดเล็กหรือมีความเร็วที่สูงใกล้เคียงกับความเร็วแสง กลศาสตร์ดั้งเดิมจะมีความแม่นยำที่ต่ำลง ต้องใช้กลศาสตร์ควอนตัมในการศึกษาแทนกลศาสตร์ดั้งเดิมเพื่อให้มีความแม่นยำในการคำนวณสูงขึ้น โดยกลศาสตร์ควอนตัมจะเหมาะสมที่จะศึกษาการเคลื่อนที่ของวัตถุที่มีขนาดเล็กมาก ซึ่งได้ถูกปรับแต่งให้เข้ากับลักษณะของอะตอมในส่วนของความเป็นคลื่น-อนุภาคในอะตอมและโมเลกุล แต่เมื่อกลศาสตร์ทั้งสองไม่สามารถใช้ได้ จากกรณีที่วัตถุขนาดเล็กเคลื่อนที่ด้วยความเร็วสูง ทฤษฎีสนามควอนตัมจึงเป็นตัวเลือกที่นำมาใช้ในการคำนวณแทนกลศาสตร์ทั้งสอง

คำว่า กลศาสตร์ดั้งเดิม ได้ถูกใช้เป็นครั้งแรกในช่วงต้นคริสต์ศตวรรษที่ 20 เพื่อกล่าวถึงระบบทางฟิสิกส์ของไอแซก นิวตันและนักปรัชญาธรรมชาติคนอื่นที่อยู่ร่วมสมัยในช่วงคริสต์ศตวรรษที่ 17 ประกอบกับทฤษฎีทางดาราศาสตร์ในช่วงแรกเริ่มของโยฮันเนส เคปเลอร์จากข้อมูลการสังเกตที่มีความแม่นยำสูงของไทโค บราเฮ และการศึกษาในการเคลื่อนที่ต่าง ๆ ที่อยู่บนโลกของกาลิเลโอ โดยมุมมองของฟิสิกส์ได้ถูกเปลี่ยนแปลงเรื่อยมาอย่างยาวนานก่อนที่จะมีทฤษฎีสัมพัทธภาพและกลศาสตร์ควอนตัม ซึ่งแต่เดิม ในบางแห่งทฤษฎีสัมพัทธภาพของไอน์สไตน์ไม่ถูกจัดอยู่ในกลศาสตร์ดั้งเดิม แต่อย่างไรก็ตามเมื่อเวลาผ่านไป หลายแห่งเริ่มจัดให้สัมพัทธภาพเป็นกลศาสตร์ดั้งเดิมในรูปแบบที่แม่นยำ และถูกพัฒนามากที่สุด

แต่เดิมนั้น การพัฒนาในส่วนของกลศาสตร์ดั้งเดิมมักจะกล่าวถึงกลศาสตร์นิวตัน ซึ่งมีการใช้หลักการทางฟิสิกส์ประกอบกับวิธีการทางคณิตศาสตร์โดยนิวตัน ไลบ์นิซ และบุคคลอื่นที่เกี่ยวข้อง และวิธีการปกติหลายอย่างได้ถูกพัฒนา นำมาสู่การกำหนดกลศาสตร์ครั้งใหม่ ไม่ว่าจะเป็น กลศาสตร์แบบลากรางจ์ และกลศาสตร์แฮมิลตัน ซึ่งสิ่งเหล่านี้ได้ถูกพัฒนาขึ้นเป็นอย่างมากในช่วงคริสต์ศตวรรษที่ 18 และ 19 อีกทั้งได้ขยายความรู้เป็นอย่างมากพร้อมกับกลศาสตร์นิวตันโดยเฉพาะอย่างยิ่งการนำกลศาสตร์เหล่านี้ไปใช้ในกลศาสตร์เชิงวิเคราะห์อีกด้วย

หลักการของกลศาสตร์ดั้งเดิม[แก้]

ในกลศาสตร์ดั้งเดิม วัตถุที่อยู่ในโลกของความเป็นจริงจะถูกจำลองให้อยู่ในรูปของอนุภาคจุด (วัตถุที่ไม่มีการอ้างอิงถึงขนาด) โดยการเคลื่อนที่ของอนุภาคจุดจะมีการกำหนดลักษณะเฉพาะของวัตถุ ได้แก่ ตำแหน่งของวัตถุ มวล และแรงที่กระทำต่อวัตถุ ซึ่งจะกำหนดไว้เป็นตัวเลขที่อาจมีหน่วยกำหนดไว้ และกล่าวถึงมาเป็นลำดับ

เมื่อมองจากความเป็นจริง วัตถุต่าง ๆ ที่กลศาสตร์ดั้งเดิมกำหนดไว้ว่าวัตถุมีขนาดไม่เป็นศูนย์เสมอ (ซึ่งถ้าวัตถุที่มีขนาดเล็กมาก ๆ อย่างเช่น อิเล็กตรอน กลศาสตร์ควอนตัมจะอธิบายได้อย่างแม่นยำกว่ากลศาสตร์ดั้งเดิม) วัตถุที่มีขนาดไม่เป็นศูนย์จะมีความซับซ้อนในการศึกษามากกว่าอนุภาคจุดตามทฤษฎี เพราะวัตถุมีความอิสระของมันเอง (Degrees of freedom) อาทิ ลูกตะกร้อสามารถหมุนได้ขณะเคลื่อนที่หลังจากที่ถูกเดาะขึ้นไปบนอากาศ อย่างไรก็ตาม ผลลัพธ์ของอนุภาคจุดสามารถใช้ในการศึกษาจำพวกวัตถุทั่วไปได้โดยสมมุติว่าเป็นวัตถุนั้น หรือสร้างอนุภาคจุดสมมุติหลาย ๆ จุดขึ้นมา ดังเช่นจุดศูนย์กลางมวลของวัตถุที่แสดงเป็นอนุภาคจุด

กลศาสตร์ดั้งเดิมใช้สามัญสำนึกเป็นแนวว่าสสารและแรงเกิดขึ้นและมีปฏิสัมพันธ์กันอย่างไร โดยตั้งสมมุติฐานว่าสสารและพลังงานมีความแน่นอน และมีคุณสมบัติที่รู้อยู่แล้ว ได้แก่ ตำแหน่งของวัตถุในปริภูมิ (Space) และความเร็วของวัตถุ อีกทั้งยังสามารถสมมุติว่ามีอิทธิพลโดยตรงกับสิ่งที่อยู่รอบวัตถุในขณะนั้นได้อีกด้วย (หรือเรียกอีกอย่างหนึ่งว่า Principle of locality)

ตำแหน่งและอนุพันธ์ของตำแหน่ง[แก้]

ดูบทความหลักที่: จลน์ศาสตร์
หน่วยอนุพันธ์ SI ที่เกี่ยวข้องกับเครื่องกล
(โดยไม่เกี่ยวข้องกับฟิสิกส์แม่เหล็กไฟฟ้าหรือฟิสิกส์อุณหภาพ)
ในหน่วยของกิโลกรัม เมตร และวินาที
ตำแหน่ง เมตร
ตำแห่งเชิงมุม/มุม ไม่มีหน่วย (เรเดียน)
ความเร็ว เมตร·วินาที−1
ความเร็วเชิงมุม วินาที−1
ความเร่ง เมตร·วินาที−2
ความเร่งเชิงมุม วินาที−2
ความกระตุก (Jerk) เมตร·วินาที−3
"ความกระตุกเชิงมุม" (Angular jerk) วินาที−3
พลังงานจำเพาะ (Specific Energy) เมตร2·วินาที−2
อัตราการดูดซับ (Absorbed dose rate) เมตร2·วินาที−3
โมเมนต์ความเฉื่อย กิโลกรัม·เมตร2
โมเมนตัม กิโลกรัม·เมตร·วินาที−1
โมเมนตัมเชิงมุม กิโลกรัม·เมตร2·วินาที−1
แรง กิโลกรัม·เมตร·วินาที−2
แรงบิด (Torque) กิโลกรัม·เมตร2·วินาที−2
พลังงาน กิโลกรัม·เมตร2·วินาที−2
กำลัง กิโลกรัม·เมตร2·วินาที−3
ความดัน และ ความหนาแน่นของพลังงาน กิโลกรัม·เมตร−1·วินาที−2
แรงตึงผิว กิโลกรัม·วินาที−2
ค่านิจสปริง (Spring constant) กิโลกรัม·วินาที−2
ความเข้มตกกระทบ (Irradiance)
และ ความเข้มของพลังงาน (Energy flux)
กิโลกรัม·วินาที−3
ความหนืดจลน์ (Kinematic Viscosity) เมตร2·วินาที−1
ความหนืดพลวัต (Dynamic Viscosity) กิโลกรัม·เมตร−1·วินาที−1
ความหนาแน่น (ความหนาแน่นมวล) กิโลกรัม·เมตร−3
ความหนาแน่น (ความหนาแน่นน้ำหนัก) กิโลกรัม·เมตร−2·วินาที−2
ค่าความหนาแน่น (Number density) เมตร−3
การกระทำ (Action) กิโลกรัม·เมตร2·วินาที-1

ตำแหน่ง ของอนุภาคจุดได้ถูกกำหนดตามจุดอ้างอิงที่กำหนดได้เองในปริภูมิ เรียกว่า จุดกำเนิด (Origin) ซึ่งในปริภูมิ จะให้ตำแหน่งอยู่ในระบบพิกัด โดยในระบบพิกัดอย่างง่ายมักกำหนดตำแหน่งวัตถุ และมีลูกศรที่มีทิศทางเป็นเวกเตอร์ในกลศาสตร์ดั้งเดิม โดยเริ่มจากจุดกำเนิดลากไปยังตำแหน่งของวัตถุ เช่น ตำแหน่ง r อยู่ในฟังก์ชันของ t (เวลา) ในสัมพัทธภาพช่วงก่อนไอน์สไตน์ (หรือเป็นที่รู้จักในชื่อ สัมพัทธภาพกาลิเลโอ) เวลาเป็นสิ่งสัมบูรณ์ คือ เวลาที่สังเกตมีระยะเท่ากันหมดในทุกผู้สังเกต ยิ่งไปกว่าเวลาสัมบูรณ์ กลศาสตร์ดั้งเดิมยังให้โครงสร้างของปริภูมิมีลักษณะโครงสร้างเป็นเรขาคณิตยูคลิดอีกด้วย

ความเร็วและอัตราเร็ว[แก้]

ดูบทความหลักที่: ความเร็ว และ อัตราเร็ว

ความเร็ว หรือ อัตราการเปลี่ยนของตำแหน่งต่อเวลา ได้นิยามไว้ด้วยอนุพันธ์เวลาของตำแหน่งดังนี้

\mathbf{v} = {\mathrm{d}\mathbf{r} \over \mathrm{d}t}\,\!

โดยกำหนดให้ v เป็นความเร็ว dr เป็นเวกเตอร์ระยะห่างของตำแหน่งเดิมและตำแหน่งใหม่ dt เป็นระยะเวลาที่ใช้เวลาเคลื่อนที่ไปยังตำแหน่งใหม่

ในกลศาสตร์ดั้งเดิม ความเร็วสามารถเพิ่มและลดได้โดยตรง ยกตัวอย่างเช่น ถ้ารถโดยสารประจำทางสายหนึ่งเดินทางด้วยความเร็ว 40 กม./ชม.ทิศตะวันตก แล้วมีรถจักรยานยนต์คันหนึ่งเดินทางด้วยความเร็ว 25 กม./ชม. ไปยังทิศตะวันออก เมื่อมองจากรถจักรยานยนต์ซึ่งมีอัตราเร็วต่ำกว่า รถโดยสารจะเดินทางด้วยความเร็ว 40-25 = 15 กม./ชม. ด้านทิศตะวันตก อีกด้านหนึ่ง ในด้านของรถโดยสารประจำทาง จะเห็นรถจักรยานเดินทางด้วยความเร็ว 15 กม./ชม. ด้านทิศตะวันออก ดังนั้นความเร็วสามารถเพิ่มหรือลดได้เป็นปริมาณเวกเตอร์ ซึ่งต้องจัดการโดยเวกเตอร์เชิงวิเคราะห์

ในทางคณิตศาสตร์ ถ้าความเร็วของวัตถุแรกให้เป็น u=ud และความเร็วของวัตถุที่สองให้เป็น v=ve โดย v และ u เป็นอัตราเร็วของวัตถุแรก และวัตถุที่สองตามลำดับ และ d กับ e เป็นเวกเตอร์หนึ่งหน่วยซึ่งแสดงถึงทิศทางการเคลื่อนที่ของวัตถุ ดังนั้นความเร็วของวัตถุแรกที่เห็นโดยวัตถุที่สอง คือ

\mathbf{u}' = \mathbf{u} - \mathbf{v} \, .

เช่นเดียวกับวัตถุที่หนึ่งที่มองกับวัตถุที่สอง

\mathbf{v'}= \mathbf{v} - \mathbf{u} \, .

เมื่อวัตถุเดินทางในทิศทางเดียวกัน สามารถทำสมการให้เป็นรูปอย่างง่ายดังนี้

\mathbf{u}' = ( u - v ) \mathbf{d} \, .

หรือถ้าไม่คำนึงถึงทิศทาง ความต่างนี้จะอยู่ในรูปของอัตราเร็วเท่านั้น ดังสมการนี้

u' = u - v \, .

ความเร่ง[แก้]

ดูบทความหลักที่: ความเร่ง

ความเร่ง หรืออัตราการเปลี่ยนแปลงของความเร็วคืออนุพันธ์เวลาของความเร็ว (อนุพันธ์เวลาที่สองของตำแหน่ง) สามารถแสดงได้ดังนี้

\mathbf{a} = {\mathrm{d}\mathbf{v} \over \mathrm{d}t} = {\mathrm{d^2}\mathbf{r} \over \mathrm{d}t^2}.

โดยความเร่งจะแสดงถึงความเร็วที่เปลี่ยนแปลงไปในช่วงเวลานั้น ๆ ไม่ว่าเป็นอัตราเร็ว ทิศทางของความเร็ว หรือทั้งสองอย่าง ซึ่งถ้าความเร็วลดลงไปเรื่อย ๆ เพียงอย่างเดียว ก็สามารถเรียกได้ว่าความหน่วงเช่นกัน แต่ปกติแล้ว ทั้งความหน่วงและความเร่งมักถูกเรียกง่าย ๆ ว่าความเร่งเพียงอย่างเดียว

กรอบอ้างอิง[แก้]

แรงในกฎข้อที่สองของนิวตัน[แก้]

ดูบทความหลักที่: แรง และ กฎการเคลื่อนที่ของนิวตัน

งานและพลังงาน[แก้]

นอกจากกฎของนิวตัน[แก้]

ข้อจำกัดของกลศาสตร์ดั้งเดิม[แก้]

กลศาสตร์ดั้งเดิมเมื่อเปรียบเทียบกับกลศาสตร์อื่นในขอบเขตศึกษาของความเร็วและขนาดของวัตถุ

การคาดประมาณในกลศาสตร์นิวตันกับทฤษฎีสัมพัทธภาพพิเศษ[แก้]

การคาดประมาณในกลศาสตร์ดั้งเดิมกับกลศาสตร์ควอนตัม[แก้]

ประวัติ[แก้]

สาขาวิชา[แก้]

ดูเพิ่มเติม[แก้]