โมเมนตัม

จากวิกิพีเดีย สารานุกรมเสรี
กลศาสตร์ดั้งเดิม
ประวัติ
จัดการ: แม่แบบ  พูดคุย  แก้ไข

โมเมนตัม หมายถึง ความสามารถในการเคลื่อนที่ของวัตถุ ซึ่งมีค่าเท่ากับผลคูณระหว่างมวลและความเร็วของวัตถุ มวลเป็นปริมาณสเกลาร์ แต่ความเร็วเป็นปริมาณเวกเตอร์ เมื่อนำปริมาณทั้งสองเข้าคูณด้วยกัน ถือว่าปริมาณใหม่เป็นปริมาณเวกเตอร์เสมอ ฉะนั้นโมเมนตัมจึงเป็นปริมาณเวกเตอร์ คือมีทั้งขนาดและทิศทาง

โมเมนตัมในกลศาสตร์ดั้งเดิม[แก้]

ถ้าวัตถุเคลื่อนที่อยู่ในกรอบอ้างอิงใด ๆ ก็ตาม วัตถุนั้นจะมีโมเมนตัมอยู่ในกรอบอ้างอิงนั้น ๆ ค่าของโมเมนตัมของวัตถุจะขึ้นอยู่กับสองตัวแปร คือมวลกับความเร็วดังที่ได้กล่าวมาแล้ว ความสัมพันธ์ของตัวแปรทั้งสองเขียนได้เป็น:

โมเมนตัม = มวล × ความเร็ว

ในวิชาฟิสิกส์ สัญลักษณ์ของโมเมนตัมคือตัวอักษร p ดังนั้นอาจเขียนสมการข้างบนใหม่ได้เป็น:

\mathbf{p}= m \mathbf{v}

โดยที่ m แทนมวล และ v แทนความเร็ว หน่วยเอสไอของโมเมนตัม คือ กิโลกรัม เมตรต่อวินาที (kg m/s) ความเร็วของวัตถุจะให้ทั้งขนาด (อัตราเร็ว) และทิศทาง โมเมนตัมของวัตถุขึ้นอยู่กับความเร็ว จึงทำให้เป็นปริมาณเวกเตอร์

การเปลี่ยนแปลงโมเมนตัมของวัตถุ เราเรียกว่า การดล ซึ่งหาได้จาก มวล × การเปลี่ยนแปลงความเร็ว หรือ แรงที่กระทำต่อวัตถุ × เวลาที่แรงนั้นกระทำ

m \Delta \mathbf{v}= \mathbf{F} \Delta t

กฎการอนุรักษ์โมเมนตัม และการชน[แก้]

โมเมนตัมมีสมบัติพิเศษนั่นก็คือจะถูกอนุรักษ์อยู่เสมอ (ไม่เพิ่มขึ้น และในขณะเดียวกันก็ไม่ลดหายไป) แม้แต่ในการชน พลังงานจลน์นั้นจะไม่ถูกอนุรักษ์ในการชน ถ้าการชนนั้นเป็นการชนแบบไม่ยืดหยุ่น เนื่องจากการคงตัวของโมเมนตัมที่กล่าวมาแล้ว จึงทำให้สามารถนำไปคำนวณความเร็วที่ไม่ทราบค่าภายหลังการชนได้

ปัญหาในวิชาฟิสิกส์ที่จะต้องใช้ความจริงที่กล่าวมานี้ ก็คือการชนกันของสองอนุภาค โดยผลรวมของโมเมนตัมก่อนการชนจะต้องเท่ากับผลรวมของโมเมนตัมหลังการชนเสมอ

m_1 \mathbf v_{1,i} + m_2 \mathbf v_{2,i} = m_1 \mathbf v_{1,f} + m_2 \mathbf v_{2,f} \,

โดยที่ตัวห้อย i แสดงถึงก่อนการชน และตัวห้อย f แสดงถึงหลังการชน

โดยปกติ เราจะทราบเพียงความเร็วก่อนการชน หรือหลังการชน ไม่อย่างใดก็อย่างหนึ่ง และต้องการที่จะทราบความเร็วอีกตัวหนึ่ง การแก้ไขปัญหานี้อย่างถูกต้องจะทำให้เราทราบว่าการชนนั้นเป็นอย่างไร การชนนั้นมีสองประเภท ดังต่อไปนี้

การชนทั้งสองประเภทที่ได้กล่าวมานี้ เป็นการชนที่อนุรักษ์โมเมนตัมทั้งหมด

การชนแบบยืดหยุ่น[แก้]

การชนกันของลูกสนุ้กเกอร์สองลูก เป็นตัวอย่างหนึ่งของการชนแบบยืดหยุ่น นอกเหนือจากที่โมเมนตัมรวมกันก่อนชนต้องเท่ากับโมเมนตัมรวมกันหลังชนแล้ว ผลรวมของพลังงานจลน์ก่อนการชนจะต้องเท่ากับผลรวมของพลังงานจลน์หลังการชนด้วย

\begin{matrix}\frac{1}{2}\end{matrix} m_1  v_{1,i}^2
      + \begin{matrix}\frac{1}{2}\end{matrix} m_2 v_{2,i}^2
      = \begin{matrix}\frac{1}{2}\end{matrix} m_1  v_{1,f}^2
      + \begin{matrix}\frac{1}{2}\end{matrix} m_2 v_{2,f}^2 \,

เนื่องจากตัวประกอบ 1/2 มีอยู่แล้วทุก ๆ พจน์ จึงสามารถนำออกไปได้

การชนแบบพุ่งตรง (การชนในหนึ่งมิติ)[แก้]

ในกรณีที่วัตถุพุ่งเข้าชนกันแบบเต็ม ๆ เป็นทางตรง เราสามารถหาความเร็วปลายได้เป็น

 v_{1,f} = \left ( \frac{m_1 - m_2}{m_1 + m_2} \right) v_{1,i} + \left ( \frac{2 m_2}{m_1 + m_2} \right) v_{2,i} \,


 v_{2,f} = \left ( \frac{2 m_1}{m_1 + m_2} \right) v_{1,i} + \left ( \frac{m_2 - m_1}{m_1 + m_2} \right)  v_{2,i} \,

การชนแบบไม่ยืดหยุ่น[แก้]

ตัวอย่างที่พบเห็นได้ของการชนแบบไม่ยืดหยุ่น คือการที่วัตถุชนแล้วติดกัน (ไถลไปด้วยกัน) สมการต่อไปนี้จะแสดงการอนุรักษ์โมเมนตัม

m_1 \mathbf v_{1,i} + m_2 \mathbf v_{2,i} = \left ( m_1 + m_2 \right) \mathbf v_f \,

การเปลี่ยนแปลงโมเมนตัม[แก้]

ในกลศาสตร์ดั้งเดิม การดลจะเปลี่ยนแปลงโมเมนตัมของวัตถุ โดยการดลมีหน่วยและมิติเหมือนโมเมนตัมทุกประการ หน่วยเอสไอของการดลนั้นเหมือนกับหน่วยของโมเมนตัม (กิโลกรัม เมตร/วินาที) การดลสามารถคำนวณได้จากปริพันธ์ของแรงกับเวลา

\mathbf{I} = \int \mathbf{F}\, dt

โดยที่

I แทนการดล หน่วยเป็นกิโลกรัม เมตรต่อวินาที
F แทนแรง หน่วยเป็นนิวตัน
t เป็นเวลา หน่วยเป็นวินาที

หากมีแรงคงตัว การดลมักจะเขียนเป็น

\mathbf{I} = \mathbf{F}\Delta t

โดยที่

\Delta t เป็นเวลาที่แรง F กระทำ

จากนิยามของแรง

\mathbf{I} = \int \frac{d\mathbf{p}}{dt}\, dt
\mathbf{I} = \int d\mathbf{p}
\mathbf{I} = \Delta \mathbf{p}

ทำให้ได้ว่าการดลคือการเปลี่ยนแปลงโมเมนตัม

ดูเพิ่ม[แก้]

อ้างอิง[แก้]

  • Halliday, David; Robert Resnick (1960-2007). Fundamentals of Physics. John Wiley & Sons. Chapter 9. 
  • Serway, Raymond; Jewett, John (2003). Physics for Scientists and Engineers (6 ed.). Brooks Cole. ISBN 0-534-40842-7
  • Stenger, Victor J. (2000). Timeless Reality: Symmetry, Simplicity, and Multiple Universes. Prometheus Books. Chpt. 12 in particular.
  • Tipler, Paul (1998). Physics for Scientists and Engineers: Vol. 1: Mechanics, Oscillations and Waves, Thermodynamics (4th ed.). W. H. Freeman. ISBN 1-57259-492-6
  • Hand, Louis N.; Finch, Janet D. Analytical Mechanics. Cambridge University Press. Chapter 4. 

แหล่งข้อมูลอื่น[แก้]