กลศาสตร์แฮมิลตัน

จากวิกิพีเดีย สารานุกรมเสรี

ฮามิลโทเนียน (Hamiltonian) หรือฟังก์ชันฮามิลตัน (Hamilton function) สำหรับระบบทางกลศาสตร์แบบฉบับ (classical mechanics) คือฟังก์ชันสเกลาร์ของพิกัดทั่วไป โมเมนตัมสังยุค และเวลา ที่สามารถใช้อธิบายการวิวัฒน์ไปในเวลา (time evolution) ของระบบนั้นได้ ทั้งนี้เนื่องจากสถานะของระบบในกลศาสตร์แบบฉบับสามารถอธิบายได้โดยการบอกพิกัดและโมเมนตัมเป็นฟังก์ชันของเวลา

นิยามและการสร้างฮามิลโทเนียน[แก้]

เราสามารถสร้างฮามิลโทเนียนได้จากลากรางเจียน (Lagrangian)ของระบบ เนื่องจากฮามิลโทเนียนเป็นฟังก์ชันของพิกัดทั่วไป (generalized coordinates) และโมเมนตัมสังยุค (conjugate momenta, canonical momenta หรือ generalized momenta) แต่ลากรางเจียนเป็นฟังก์ชันของพิกัดและอัตราเร็วของพิกัดนั้น (อนุพันธ์ของพิกัดเทียบกับเวลา) ดังนั้นเราจึงจำเป็นจะต้องนิยามโมเมนตัมสังยุคก่อน

โดย คือพิกัดทั่วไป คืออัตราเร็วสำหรับพิกัดนั้น และ คือเวลา ซึ่งเวลาจะทำหน้าที่เป็นพารามิเตอร์ในกลศาสตร์แบบฉบับ

เมื่อเรานิยามโมเมนตัมสังยุคแล้ว ถ้าเราสามารถเขียนอัตราเร็ว ให้เป็นฟังก์ชันของโมเมนตั้มได้ เราจะสามารถมองว่าพิกัดและโมเมนตัมเป็นตัวแปรอิสระได้ (ต่างจากในกรณีของลากรางเจียน ซึ่งความเร็วจะเป็นแค่อนุพันธ์เทียบกับเวลาของพิกัด ไม่ใช่ตัวแปรอิสระ) ซึ่งปริภูมิของพิกัดและโมเมนตัมสังยุคนี้มีชื่อคือ Phase space

ฮามิลโทเนียนของระบบนั้นจะนิยามโดยการแปลงเลอจองก์ (Legendre transform) ของลากรางเจียนคือ

โดยที่เราเขียนอัตราเร็วให้เป็นฟังก์ชันของโมเมนตัม (ทำให้ฮามิลโทเนียนเป็นฟังก์ชันของพิกัดและโมเมนตัม ไม่ใช่พิกัดและความเร็ว)

ฮามิลโทเนียนในกรณีทั่วไป[แก้]

ในกรณีที่จำเป็นต้องใช้พิกัด ตัว

เพื่ออธิบายระบบด้วยลากรางเจียน

เราจะสามารถนิยามโมเมนตัมสังยุคแต่ละตัว ได้โดย

ทำให้เรามีระบบสมการ N สมการ ในกรณีที่สมการนี้สามารถแก้ได้เพื่อเขียนอัตราเร็วให้อยู่เป็นฟังก์ชันของพิกัดและโมเมนตัม

เราจะสามารถสร้างฮามิลโทเนียนได้จากการการแปลงเลอจองก์

ข้อควรระวังคือในบางระบบ เราจะไม่สามารถเขียนอัตราเร็วของพิกัดทุกๆตัวให้เป็นฟังก์ชันของพิกัดและโมเมนตัมได้ ซึ่งจะทำให้โมเมนตัมทุกตัวไม่เป็นอิสระต่อกันและไม่สามารถใช้ฮามิลโทเนียนอธิบายการวิวัฒน์ไปในเวลาของระบบได้

ความสัมพันธ์ระหว่างฮามิลโทเนียนกับลากรางเจียน[แก้]

เมื่อพิจารณาการเปลี่ยนแปลง (variation) ของปริมาณ เราจะได้

จะพบว่าการนิยามโมเมนตัมโดย ทำให้การเปลี่ยนแปลงของ ไม่มีผลต่อการเปลี่ยนแปลงของปริมาณนี้อัตโนมัติ (เนื่องจากสัมประสิทธิ์ของพจน์ เป็นศูนย์) ดังนั้นการเปลี่ยนแปลงของปริมาณนี้จะขึ้นกับการเปลี่ยนแปลงของตัวแปรคือพิกัด โมเมนตัมสังยุค และเวลา เนื่องจากเราเรียกปริมาณนี้ว่าฮามิลโทเนียน

จะเห็นว่าฮามิลโทเนียนเป็นฟังก์ชันของตัวแปรสามชนิดดังกล่าว สอดคล้องกับนิยามที่เขียนไว้ด้านบน นอกจากนั้นเราจะได้

ซึ่งมีความสมมาตรอย่างชัดเจนกับนิยามของโมเมนตัม นั่นคือ

ความสัมพันธ์ลักษณะนี้เป็นคุณสมบัติสำคัญอย่างหนึ่งของการแปลงเลอจองก์

เมื่อพิจารณาการเปลี่ยนแปลงของปริมาณ จะพบว่า

และเมื่อใช้นิยามของ จะเห็นว่าปริมาณนี้เป็นฟังก์ชันของตัวแปรคือพิกัด อัตตราเร็ว และเวลา ซึ่งก็คือลากรางเจียนนั่นเอง

นอกจากนั้นเราพบว่า

และ

ซึ่งเป็นความสัมพันธ์ที่มีลักษณะเดียวกัน เนื่องจากตัวแปร และ ไม่ได้มีการแปลงเลอจองก์

ข้อสรุปสำคัญสำหรับหัวข้อนี้คือลากรางเจียนและฮามิลโทเนียนเป็นปริมาณที่เป็นคู่กัน (dual) ซึ่งเป็นผลมาจากคุณสมบัติของการแปลงเลอจองก์


ตัวอย่างการสร้างฮามิลโทเนียน[แก้]

การสั่นแบบฮาร์โมนิกใน 1 มิติ[แก้]

ระบบการสั่นแบบฮาร์โมนิกใน 1 มิติ (1 dimensional harmonic oscillator) สามารถอธิบายโดยลากรางเจียน

โดย คือพิกัดของระบบ (เช่นตำแหน่งของอนุภาคบนสปริง) และ คือค่าคงที่ของระบบนั้น (เช่นค่าคงที่ของสปริง) จะเห็นว่าโมเมนตัมสังยุคของพิกัด คือ

ซึ่งในกรณีนี้จะสามารถแก้สมการและเขียนอัตราเร็วของพิกัด ให้เป็นฟังก์ชันของโมเมนตัมได้

ดังนั้นฮามิลโทเนียนของระบบนี้คือ

สังเกตว่า

เมื่อ คือพลังงานจลน์ (kinetic energy) ซึ่งเขียนเป็นฟังก์ชันของโมเมนตัมสังยุคและ คือพลังงานศักย์ของระบบ

การเคลื่อนที่ด้วยแรงสู่ศูนย์กลาง (Central Potential)[แก้]

แรงสู่ศูนย์กลางสามารถอธิบายได้โดยศักย์ที่เป็นฟังก์ชันของระยะห่างจากจุดอ้างอิง (origin)

ในกรณีนี้การเลือกใช้พิกัดทรงกลมให้เป็นพิกัดทั่วไปจะทำให้อธิบายระบบได้สะดวกกว่า

การที่ศักย์เป็นฟังก์ชันของระยะห่างจากจุดอ้างอิงอย่างเดียวทำให้ระบบมีสมมาตรภายใต้การหมุน(รอบแกนใดๆก็ได้) ดังนั้นโมเมนตัมเชิงมุมของการหมุนรอบแกนนั้นๆไม่เปลี่ยนแปลง (conserved) ทำให้การเคลื่อนที่ของระบบอยู่ในระบาบ 2 มิติ ดังนั้นเราจำเป็นจะต้องใช้พิกัดแค่สองจากสามตัวในการบอกตำแหน่งของระบบ ลากรางเจียนของระบบนี้คือ

ในกรณีนี้จะมีโมเมนตัมสังยุคของพิกัดสองพิกัดคือ

และ

โดยเราสามารถแก้สมการเขียนอัตตราเร็วในรูปของโมเมนตัมได้คือ



สังเกตว่าอัตราเร็ว เป็นฟังก์ชันของทั้งโมเมนตัมสังยุคของพิกัด เองและฟังก์ชันของพิกัด ด้วย

ในกรณีนี้จะได้

ซึ่งสามารถเขียนเป็นผลรวมของพลังงานจลน์(ที่เป็นฟังก์ชันของโมเมนตัมสังยุค)และพลังงานศักย์ได้เช่นกัน

อนุภาคในสนามไฟฟ้า[แก้]

สำหรับอนุภาคที่มีอัตราเร็วน้อยกว่าอัตราเร็วแสงมากๆ () จะได้ว่าลากรางเจียนของระบบคือ

โดยที่ คือประจุไฟฟ้าของอนุภาค คือศักย์สเกลาร์

ในกรณีนี้โมเมนตัมสังยุคคือ

ซึ่งจะเท่ากับ kinetic momentum ดังนั้นฮามิลโทเนียนของระบบนี้คือ

ซึ่งสามารถเขียนให้อยู่ในรูปผลรวมพลังงานจลน์(เป็นฟังก์ชันของโมเมนตัมสังยุค)และพลังงานศักย์ได้

อนุภาคในสนามไฟฟ้า-แม่เหล็ก[แก้]

เมื่ออนุภาคที่มีอัตราเร็วน้อยกว่าอัตราเร็วแสงมากๆ () อยู่ในสนามไฟฟ้า-แม่เหล็ก เราจะต้องเปลี่ยนมาใช้ลากรางเจียนซึ่งมีเทอมที่อธิบายอันตรกริยาระหว่างอนุภาคกับสนามแม่เหล็ก

โดยที่ คือศักย์เว็คเตอร์ (vector potential) ของสนามไฟฟ้า-แม่เหล็ก สังเกตว่าในกรณีนี้เราไม่สามารถนิยามลากรางเจียนได้จากผลต่างของพลังงานจลน์และพลังงานศักย์ (เนื่องจากสนามแม่เหล็กไม่ทำงาน)

ในกรณีนี้โมเมนตัมสังยุคคือ

ซึ่งจะไม่เท่ากับ kinetic momentum

ฮามิลโทเนียนของระบบนี้คือ

ซึ่งจะเห็นว่าในกรณีนี้ ฮามิลโทเนียนของระบบจะเท่ากับผลรวมของพลังงานจลน์ซึ่งเป็นฟังก์ชันของโมเมนตัมสังยุคและพลังงานศักย์จากสนามไฟฟ้า แต่ไม่มีเทอม"พลังงาน"ในรูป ซึ่งจริงๆแล้วเทอมนี้เป็นเพียงตัวกำหนดอันตรกริยา(interaction) ระหว่างอนุภาคกับสนามแม่เหล็ก

เมื่อใดที่ H = T + V[แก้]

ในกรณีที่เราทราบศักย์ V(q) ของระบบแล้วต้องการที่จะสร้างฮามิลโทเนียนของระบบนั้น การจะเขียน เมื่อ คือพลังงานจลน์ของระบบที่เป็นฟังก็ชันของโมเมนตัมสังยุคและ คือฟังก์ชันของพลังงานศักย์ จะต้องทำด้วยความระมัดระวัง เช่นในตัวอย่างข้างบนสำหรับอนุภาคในสนามไฟฟ้า-แม่เหล็ก

กรณีทั่วไป[แก้]

[1]เมื่ออัตรเร็วที่ปรากฏในลากรางเจียนของระบบใดๆอยู่ในรูปยกกำลังสองเท่านั้น เราจะสามารถเขียนลากรางเจียนจะอยู่ในรูปผลต่างระหว่างพลังงานจลน์และพลังงานศักย์

และสามารถเขียนพจน์ของ"พลังงานจลน์"ได้เป็น

โดยที่ อาจจะเป็นฟังชันก์ของพิกัดได้ เราจะพบว่าโมเมนตัมสังยุคคือ

ในกรณีที่สามารถแก้สมการนี้เพื่อเขียนอัตราเร็วให้เป็นฟังก์ชันของโมเมนตัมสังยุคได้

เมื่อ คือฟังก์ชันที่เหมาะสม เราจะพบว่า

ดังนั้นฮามิลโทเนียนของระบบนี้จะเป็น

โดยที่พลังงานจลน์เป็นฟังก์ชันของโมเมนตัมสังยุค นั่นคือเราจะสามารถเขียนฮามิลโทเนียนให้เป็นผลรวมของพลังงานจลน์และพลังงานศักย์ได้เมื่อลากรางเจียนเป็นฟังก์ชันของอัตราเร็วกำลังสอง(และเป็นฟังก์ชันของพิกัด)

สำหรับลากรางเจียนที่เขียนอยู่ในรูป

โดยที่ และ อาจจะเป็นฟังก์ชันของพิกัด จะเห็นว่า

ดังนั้น

สังเกตว่าเทอมที่เป็นเชิงเส้น(linear)ของอัตราเร็วในลากรางเจียนจะไม่ปรากฏในฮามิลโทเนียน ดังนั้นเราจึงจำเป็นจะต้องระมัดระวังในการนิยามส่วนที่จะเรียกว่าพลังงานจลน์และพลังงานศักย์ในลากรางเจียน ซึ่งอาจจะทำให้ได้ฮามิลโทเนียนที่ไม่ถูกต้องได้ถ้าใช้"วิธีลัด"

ตัวอย่าง[แก้]

ลากรางเจียนของอนุภาคที่เคลื่อนที่ด้วยแรงสู่ศูนย์กลางจากตัวอย่างข้างบน

เป็นฟังก์ชันของ โดย และ ในกรณีนี้จะเห็นว่าฮามิลโทเนียนสามารถเขียนเป็นนผลรวมของพลังงานจลน์และพลังงานศักย์ได้

ส่วนในกรณีของอนุภาคในสนามไฟฟ้า-แม่เหล็กจะเห็นว่าลากรางเจียนมีเทอมที่เป็นฟังก์ชันของอัตราเร็วยกกำลังหนึ่งอยู่ คือเทอม ซึ่งทำให้ไม่สามารถเขียนฮามิลโทเนียนเป็นผลรวมของพลังงานจลน์และพลังงานศักย์ได้ถ้าเรามองว่าเทอมดังกล่าวเป็นส่วนหนึ่งของพลังงานศักย์

เมื่อใดที่ฮามิลโทเนียนเป็นศูนย์[แก้]

สิ่งสำคัญในการสร้างฮามิลโทเนียนคือระบบสมการที่ใช้นิยามโมเมนตัมสังยุคจะต้องสามารถแก้ได้เพื่อจะเขียนอัตราเร็วเป็นฟังก์ชันของพิกัด โมเมนตัมสังยุค และเวลา

ตัวอย่าง[แก้]

เมื่อลากรางเจียนเป็นฟังก์ชันสม่ำเสมอดีกรีหนึ่งของอัตราเร็ว (Homogeneous function)

เมื่อใช้ทฤษฎีบทของออยเลอร์ (Euler) สำหรับฟังก์สม่ำเสมอ เราจะพบว่า

ดังนั้น

อนุภาค relativistic[แก้]

[2] ตัวอย่างของลากรางเจียนที่มีคุณสมบัตินี้คือลากรางเจียนของอนุภาค relativistic ซึ่งเราสามารถให้เวลา เป็นตัวแปรพลวัติ (dynamical variable) ได้ถ้าเราใช้พารามิเตอร์ ใดๆในการอธิบายการเคลื่อนที่โดยที่ กล่าวคือ

สังเกตว่าเพื่อความสะดวก เราจะใช้หน่วยธรรมชาติ (natural units) คือหน่วยที่เลือกให้อัตราเร็วแสงและค่าคงที่ของพลังค์ (Planck constant) มีค่าเป็นหนึ่ง

ในกรณีที่เราเลือก ที่ทำให้

เราจะสามารถใช้ เป็นเวลาที่วัดบนกรอบอ้างอิงที่เป็นกรอบอ้างอิงเดียวกับนาฬิกาได้ (proper time) โดยเพื่อความสะดวกในการเขียนสมการในตัวอย่างนี้ เราจะใช้การเติมจุดข้างบนตัวแปร

ลากรางเจียนที่สามารถอธิบายการเคลื่อนที่ของอนุภาคได้คือ

เราจะพบว่าลากรางเจียนนี้เป็นฟังก์ชันสม่ำเสมอของอัตราเร็ว

โมเมนตัมสังยุคของอัตราเร็วใน spacetime คือ

เมื่อใช้วิธีจากตัวอย่างข้างบน (ทฤษฎีบทของออยเลอร์) จะเห็นว่าฮามิลโทเนียนเป็นศูนย์


สาเหตุที่ฮามิลโทเนียนเป็นศูนย์คือ โมเมนตัมสังยุคมีคุณสมบัติ

ซึ่งแสดงว่าเส้นใดๆในปริภูมิ (space) ของ ที่ลากระหว่างจุด ใดๆกับจุด จะถูกแม๊ป (map) ไปยังจุดๆเดียวในปริภูมิของโมเมนตัม ดังนั้นเราจึงสรุปได้ว่าปริภูมิของอัตราเร็วจะถูกแม๊ปไปยังพื้นผิวหนึ่ง (surface) ในปริภูมิของโมเมนตัม ซึ่งพื้นผิวนี้จะถูกนิยามโดยโมเมนตัมสังยุค

ทำให้ไม่สามารถแก้สมการเขียนอัตราเร็วในรูปของโมเมนตัมสังยุคได้ นอกจากนั้น สังเกตว่า

ก็คือความสัมพันธ์ระหว่างโมเมนตัม มวล และพลังงานของอนุภาคที่ได้จากทฤษฎัสัมพัธภาพนั่นเอง ดังนั้นพื้นผิวดังกล่าวจึงเรียกว่า mass-shell constraint surface

ตัวอย่างนี้แสดงให้เห็นว่าการที่สมการความสัมพันธ์ระหว่างโมเมนตัมสังยุคและอัตตราเร็ว (นิยามของโมเมนตัมสังยุค)ไม่สามารถถูกแก้เพื่อเขียนอัตราเร็วทุกตัวในรูปของโมเมนตัมสังยุคได้ โมเมนตัมของระบบจะไม่เป็นปริมาณอิสระต่อกัน ทำให้ไม่สามารถอธิบายระบบด้วยฮามิลโทเนียน

วิธีตรวจสอบว่าใช้ฮามิลโทเนียนได้หรือไม่[แก้]

ในกรณีที่ใช้ตัวแปรหลายตัวในการอธิบายระบบ เมื่อต้องการทราบว่าโมเมนตัมสังยุคเป็นตัวแปรอิสระต่อกันหรือไม่ เราจะพิจารณาดีเทอร์มิแนนท์ (determinant) ของแมตริกซ์ที่สร้างจากอนุพันธ์อันดับสองของนิยามของโมเมนตัม ซึ่งทางคณิตศาสตร์มักจะเรียกแมตริกซ์นี้ว่าเฮซเซียน (Hessian matrix) โดยแมตริกซ์นี้มีสมาชิกตัวแถวที่ และหลักที่ คือ

โดยเราจะสามารถแก้สมการเขียนอัตราเร็วในรูปของโมเมนตัมสังยุคก็ต่อเมื่อดีเทอร์มิแนนท์ของแมตริกซ์นี้ไม่เป็นศูนย์ นั่นคือเราจะได้

ก็ต่อเมื่อ

ส่วนในกรณีที่

เราจะไม่สามารถแก้สมการเขียนอัตราเร็วในรูปของโมเมนตัมสังยุคได้ ทำให้ไม่สามารถอธิบายระบบด้วยฮามิลโทเนียน ซึ่งในกรณีนี้เราจะต้องใช้วิธีสร้างฮามิลโทเนียนสำหรับระบบที่มี constraint ซึ่งผู้อ่านสามารถศึกษาเพิ่มเติมได้จากแหล่งข้อมูลอ้างอิงด้านล่าง [3][4]

อ้างอิง[แก้]

  1. Lanczos, Cornelius (1986), The Variational Principles of Mechanics, Dover, ISBN 978-0486650678 
  2. [Elias] Check |authorlink= value (help) (2007), String Theory in a Nutshell, Princeton University Press, ISBN 978-0691122304 
  3. Dirac, Paul A.M. (2001), Lectures on Quantum Mechanics, Dover, ISBN 978-0486417134 
  4. Henneaux, Marc; Claudio Teitelboim (1994), Quantization of Gauge Systems, Princeton University Press, ISBN 978-0691037691