ระบบการได้ยิน

จากวิกิพีเดีย สารานุกรมเสรี
(เปลี่ยนทางจาก ระบบประสาทการได้ยิน)

ระบบการได้ยิน[1] (อังกฤษ: auditory system) เป็นระบบรับความรู้สึก/ระบบประสาทสัมผัส ซึ่งรวมทั้งอวัยวะการฟังคือหู และระบบประสาทเกี่ยวกับการฟัง

กายวิภาคของหู แม้ว่าช่องหูจะยาวเกินสัดส่วนในรูป

โครงสร้าง[แก้]

หูชั้นนอก[แก้]

ดูบทความหลักที่: หูชั้นนอก

กระดูกอ่อนที่อยู่รอบ ๆ ช่องหูเรียกว่า ใบหู (pinna, auricle, auricula) คลื่นเสียงจะสะท้อนและเปลี่ยนไปเมื่อกระทบใบหู โดยความเปลี่ยนแปลงจะให้ข้อมูลเพิ่มเพื่อช่วยสมองกำหนดทิศทางของแหล่งเสียง มนุษย์ได้ยินเสียงรอบ ๆ ศีรษะไม่ได้เท่ากัน จะมีเสียงในความถี่และความดัง ที่บางตำแหน่งจะได้ยินดีกว่า การรู้ทิศทางของเสียงโดยเฉพาะในแนวดิ่ง ขึ้นอยู่กับรูปร่างของหูอย่างสำคัญ[2] ต่อจากนั้น คลื่นเสียงก็จะเข้าไปยังช่องหู (auditory canal) ซึ่งเป็นท่อที่ดูเหมือนไม่ซับซ้อน แต่ช่องหูจะขยายเสียงระหว่างความถี่ 3-12 กิโลเฮิรตซ์ ที่สุดของช่องหูเป็นแก้วหู (eardrum, tympanic membrane) ซึ่งเป็นจุดเริ่มต้นของหูชั้นกลาง (middle ear)

กระดูกหู (ossicles) ในโพรงหูส่วนกลาง (tympanic cavity)

หูชั้นกลาง[แก้]

ดูบทความหลักที่: หูชั้นกลาง

คลื่นเสียงจะวิ่งผ่านช่องหูเข้าไปกระทบกับแก้วหู (ซึ่งใหญ่ประมาณ 9 มม.[2]) แล้วจะวิ่งผ่านหูชั้นกลางซึ่งเต็มด้วยอากาศผ่านลำดับกระดูกหูที่ละเอียดอ่อน คือ กระดูกค้อน (malleus) กระดูกทั่ง (incus) และกระดูกโกลน (stapes)

กระดูกเหล่านี้ทำงานเหมือนคานงัดและลูกสูบ ที่แปลงแรงสั่นของแก้วหูที่มีความดันต่ำ ให้เป็นความสั่นมีความดันสูงเมื่อไปถึงเยื่อหูชั้นในรูปหอยโข่ง/คอเคลีย (cochlea) ที่เล็กกว่าซึ่งเรียกว่า oval window หรือ vestibular window จุดงัดเริ่มต้นคือกระดูกค้อนซึ่งเชื่อมกับแก้วหู แล้วงัดกระดูกทั่ง ซึ่งจะเป็นตัวงัดกับกระดูกโกลน ซึ่งทำหน้าที่คล้ายกับลูกสูบ โดยปลายจะเชื่อมกับ oval window ของคอเคลีย[2] และความดันเสียง (ความสั่น) ที่สูงกว่าที่ oval window เป็นเรื่องจำเป็นเพราะว่า หูชั้นในเลย oval window เข้าไปเป็นน้ำ ไม่ใช่อากาศ กระดูกค้อนและกระดูกโกลนเป็นส่วนเหลือค้างจากกระบวนการวิวัฒนาการ โดยเป็นกระดูกคาง ของสัตว์มีคางบางพวก[2]

รีเฟล็กซ์สเตปีเดียส (stapedius reflex) ที่กล้ามเนื้อหูชั้นกลางจะช่วยป้องกันหูชั้นในจากความเสียหาย โดยลดการส่งต่อพลังงานเสียงเมื่อกล้ามเนื้อสเตปีเดียสเกิดทำงานตอบสนองต่อเสียง หูชั้นกลางยังส่งข้อมูลของเสียงในรูปคลื่นเสียง ซึ่งจะเปลี่ยนเป็นกระแสประสาทที่คอเคลีย

หูชั้นใน[แก้]

หูชั้นในรูปหอยโข่ง
(Cochlea)
Gray928.png
ผังผ่า cochlea ออกตามยาว (longitudinal section) ส่วนที่เรียกว่า "cochlear duct" หรือ "scala media" ขึ้นป้ายว่า ductus cochlearis ที่ขวามือ
อภิธานศัพท์กายวิภาคศาสตร์
ดูบทความหลักที่: หูชั้นใน

หูชั้นในประกอบด้วยอวัยวะรูปหอยโข่ง/คอเคลีย (cochlea) (ในมนุษย์ มีเส้นผ่าศูนย์กลางประมาณ 9 มม.[2]) และโครงสร้างที่ไม่เกี่ยวกับการได้ยินเสียงอื่น ๆ อวัยวะรูปหอยโข่งจะมีส่วน 3 ส่วนที่เต็มไปด้วยน้ำ โดยความดันที่เยื่อกั้นหูชั้นใน (basilar membrane) ซึ่งแบ่งส่วนของโครงสร้าง จะเป็นตัวขับคลื่นในน้ำ สิ่งที่น่าสังเกตอย่างหนึ่งก็คือ ท่อที่เรียกว่า "cochlear duct/partition" หรือ "scala media" จะมี endolymph ซึ่งเป็นน้ำที่มีสารประกอบคล้ายกับของเหลวในเซลล์ อวัยวะของคอร์ติอยู่ในท่อนี้บนเยื่อกั้นหูชั้นใน และมีหน้าที่แปลงคลื่นกลไปเป็นสัญญาณไฟฟ้า อีกสองช่องที่เหลือเรียกว่า scala tympani และ scala vestibuli ซึ่งอยู่ในห้องหูชั้นใน (labyrinth) ที่เป็นกระดูก และเต็มไปด้วยของเหลวที่เรียกว่า perilymph ซึ่งมีสารประกอบคล้ายกับน้ำหล่อสมองไขสันหลัง ความแตกต่างทางเคมีของ endolymph และ perilymph เป็นเรื่องสำคัญต่อการทำงานของหูชั้นใน ซึ่งอาศัยความแตกต่างทางศักย์ไฟฟ้าของไอออน โพแทสเซียมและแคลเซียม (endolymph มีศักย์ไฟฟ้า 80-90 mV มากกว่า perilymph เพราะมีไอออนโพแทสเซียมมากกว่าแคลเซียม[3])

ถ้าคลี่อวัยวะรูปหอยโข่งออก (ในมนุษย์หญิงจะยาวประมาณ 33 มม. และชาย 34 มม.[4]) ก็จะพบส่วนต่าง ๆ ที่ตอบสนองต่อความถี่เสียงโดยเฉพาะ ซึ่งเป็นปกติของสัตว์เลี้ยงลูกด้วยนมทั้งหมดและสัตว์มีกระดูกสันหลังโดยมาก โดยส่วนที่ตอบสนองต่อความถี่สูงสุดจะอยู่ใกล้ oval window มากที่สุด ที่ตอบสนองต่อความถี่ต่ำสุดจะอยู่ไกลสุด และความถี่ที่ตอบสนองจะอยู่ในรูปฟังก์ชันยกกำลัง ในสัตว์บางสปีชีส์ เช่น ค้างคาวและโลมา จะมีบางความถี่ที่ตอบสนองเป็นพิเศษเพื่อสนับสนุนการใช้โซนาร์

อวัยวะของคอร์ติ อยู่ที่ scala media

อวัยวะของคอร์ติ[แก้]

ดูบทความหลักที่: อวัยวะของคอร์ติ

อวัยวะของคอร์ติเป็นแถบเยื่อบุผิวรับประสาทสัมผัส (sensory epithelium) ซึ่งวิ่งไปตามยาวในส่วน scala media ของอวัยวะรูปหอยโข่ง (cochlea) ทั้งหมด เซลล์ขนของมันแปลงคลื่นกลในของเหลวไปเป็นสัญญาณประสาท การทำงานของเซลล์ประสาทจำนวนมหาศาลเริ่มที่ขั้นแรกนี้ จากนี่ การประมวลข้อมูลเสียงต่อ ๆ ไปจะทำให้ทั้งได้ยินและเกิดปฏิกิริยาต่อการได้ยิน

เซลล์ขน[แก้]

ดูบทความหลักที่: เซลล์ขน

เซลล์ขน (Hair cell) เป็นเซลล์รูปแท่ง แต่ละเซลล์มีซีเลีย (cilia) ที่ทำงานโดยเฉพาะ ๆ ประมาณ 100-200 อันด้านบนเหมือนขน ซึ่งเป็นลักษณะที่ให้ชื่อของเซลล์ (ในมนุษย์ คอเคลียแต่ละข้างจะมีเซลล์ขนรวมกันประมาณ 16,000 เซลล์[5]) มีเซลล์ขน 2 ประเภท คือ

  • เซลล์ขนด้านใน (Inner hair cell, IHC) เป็นตัวรับแรงกล (mechanoreceptor) เพื่อการได้ยิน โดยเซลล์จะแปรความสั่นเนื่องจากเสียงไปเป็นกระแสไฟฟ้าในใยประสาท (nerve fiber) ส่งไปที่สมอง (ในมนุษย์ คอเคลียแต่ละข้างจะมี IHC ประมาณ 3,500 เซลล์[6])
  • เซลล์ขนด้านนอก (Outer hair cell, OHC) เป็นโครงสร้างที่ทำให้เคลื่อนไหวได้ คือ พลังงานเสียงทำให้เซลล์เหล่านี้เปลี่ยนรูป ซึ่งเป็นการขยายเสียงตามความถี่โดยเฉพาะ ๆ (ในมนุษย์ คอเคลียแต่ละข้างจะมี OHC ประมาณ 12,000 เซลล์[6])

มีเยื่อ tectorial membrane (TM) ที่วางลงเบา ๆ บนซีเลียที่ยาวที่สุดของ IHC เยื่อจะขยับตามวงจร (หรือคาบ) ของเสียงแล้วเบนซีเลีย ซึ่งสร้างการตอบสนองทางไฟฟ้าของเซลล์ขน IHC เป็นเหมือนกับเซลล์รับแสงในตา จะตอบสนองด้วยการสร้าง Graded potential (ศักย์มีหลายระดับ) ไม่ได้สร้างศักยะงาน (action potential) เหมือนนิวรอนทั่ว ๆ ไป ศักย์แบบนี้ไม่ได้จำกัดโดยการ "มีหรือไม่มี" (all or none) ของศักยะงาน

ถึงตรงนี้ อาจจะมีคำถามว่า แล้วการขยับขนทำให้เกิดความต่างศักย์ได้อย่างไร แบบจำลองในปัจจุบันเสนอว่า ซีเลียจะเชื่อมกันโดยใยเชื่อมปลาย (tip link) ซึ่งเป็นโครงสร้างที่เชื่อมปลายของซีเลียอันหนึ่งไปยังอีกอันหนึ่ง ดังนั้น ไม่ว่าจะเป็นการดึงหรือดัน ใยเชื่อมปลายอาจเปิดช่องไอออนแล้วทำให้เกิดศักย์ไฟฟ้าในเซลล์ขน งานวิจัยปี 2553 แสดงว่า โปรตีน CDH23 (Cadherin-23) ร่วมกับ PCDH15 (Protocadherin-15) เป็นโมเลกุลของใยเชื่อมปลาย[7] เชื่อว่า มีมอเตอร์ขับโดยแคลเซียมที่ทำให้ใยสั้นลงเพื่อทำให้ตึงอีก ซึ่งทำให้รับรู้เสียงที่ดังนานได้[8]

นิวรอน[แก้]

เซลล์ขนด้านใน (IHC) จะส่งสัญญาณให้ใยประสาทของนิวรอนนำเข้า (Afferent neuron) ผ่านไซแนปส์โดยใช้สารสื่อประสาทกลูตาเมต และนิวรอนนำเข้าจะส่งสัญญาณไปยังนิวรอนในระบบประสาทการได้ยินปฐมภูมิต่อไป มี IHC ในอวัยวะรูปหอยโข่งน้อยกว่านิวรอนนำเข้ามาก ดังนั้น เซลล์ขนแต่ละเซลล์จะเชื่อมกับใยประสาทนำเข้าหลายเส้น (คือนิวรอนนำเข้าหลายตัว) โดยใยประสาทจะเป็นของนิวรอนที่เป็นส่วนของโสตประสาท (auditory nerve) ซึ่งจะรวมเข้ากับ vestibular nerve กลายเป็น vestibulocochlear nerve หรือประสาทสมอง (cranial nerve) หมายเลข VIII[9] ตำแหน่งที่เยื่อกั้นหูชั้นใน (basilar membrane) ให้ข้อมูลกับใยประสาทนำเข้าเส้นใดเส้นหนึ่งโดยเฉพาะสามารถพิจารณาได้ว่าเป็นลานรับสัญญาณ (receptive field) ของมัน

มีใยประสาทนำออกจากสมองไปยัง cochlea ที่มีบทบาทในการได้ยินเสียง แต่ว่า บทบาทนี้ยังไม่ชัดเจน ไซแนปส์ของใยประสาทนำออกไปสุดที่ทั้งตัวเซลล์ขนนอก (OHC) และที่เดนไดรต์ของใยประสาทนำเข้าที่อยู่ใต้ IHC

วิถีประสาทการได้ยิน

ระบบประสาทกลาง[แก้]

ข้อมูลเสียง ซึ่งตอนนี้ได้เข้ารหัสแล้ว (ไม่ได้เป็นเสียง) จะส่งไปทาง vestibulocochlear nerve ผ่านโครงสร้างต่าง ๆ รวมทั้ง cochlear nuclei และ superior olivary complex ซึ่งอยู่ที่ก้านสมอง ตลอดจน inferior colliculus ของสมองส่วนกลาง ซึ่งแต่ละขั้นตอนจะมีการประมวลข้อมูลเพิ่ม ข้อมูลในที่สุดก็จะส่งไปถึงทาลามัส ซึ่งจะส่งต่อไปยังเปลือกสมอง ในสมองมนุษย์ เปลือกสมองส่วนการได้ยินปฐมภูมิ (primary auditory cortex) จะอยู่ในสมองกลีบขมับ หัวข้อย่อยต่อไปไปนี้แสดงข้อมูลทั่วไปเกี่ยวกับโครงสร้างประสาทต่าง ๆ

Cochlear nucleus[แก้]

ส่วน cochlear nucleus เป็นจุดแรกที่มีการประมวลข้อมูลประสาทที่หูชั้นในได้เปลี่ยนเป็นข้อมูล "ดิจิตัล" แล้ว ในสัตว์เลี้ยงลูกด้วยนม เขตนี้แบ่งทางกายวิภาคและสรีรภาพออกเป็นสองส่วน คือ dorsal cochlear nucleus (DCN) และ ventral cochlear nucleus (VCN) นอกจากนั้น VCN ยังแบ่งโดยรากประสาท (nerve root) เป็น posteroventral cochlear nucleus (PVCN) และ anteroventral cochlear nucleus (AVCN)[10]

Trapezoid body[แก้]

trapezoid body เป็นมัดของใยประสาทไขว้ทแยง (decussating fiber) เข้าไปในพอนส์ด้านล่าง (ventral) ที่อยู่ในก้านสมอง ใช้ส่งข้อมูลให้ก้านสมองเพื่อประมวลเสียงจากหูทั้งสอง แอกซอนบางส่วนมาจาก cochlear nucleus แล้วข้ามไขว้ทแยงไปอีกด้านหนึ่งของศีรษะก่อนส่งไปที่ superior olivary nucleus ต่อไป ซึ่งเชื่อว่าช่วยกำหนดทิศทางของเสียง[11]

Superior olivary complex[แก้]

superior olivary complex อยู่ในพอนส์และได้รับกระแสประสาทโดยมากจาก ventral cochlear nucleus แม้ว่าจะได้จาก dorsal cochlear nucleus บ้างผ่าน Trapezoid body (ซึ่งเรียกอีกอย่างได้ว่า ventral acoustic stria ตัวย่อ VAS) ใน superior olivary complex จะมีส่วนที่เรียกว่า lateral superior olive (LSO) และ medial superior olive (MSO) ส่วนแรกสำคัญในการตรวจจับความแตกต่างของระดับเสียงระหว่างหู ขณะที่อีกส่วนสำคัญในการจำแนกความแตกต่างทางเวลาระหว่างหู[12]

ลำเส้นใยประสาท Lateral lemniscus มีสีแดง เป็นตัวเชื่อม cochlear nucleus, superior olivary nucleus และ inferior colliculus มุมมองจากด้านหลัง

Lateral lemniscus[แก้]

Lateral lemniscus เป็นลำเส้นใยประสาทในก้านสมองที่ส่งข้อมูลเกี่ยวกับเสียงจาก cochlear nucleus ไปยังนิวเคลียสประสาทต่าง ๆ ในก้านสมอง ตลอดจน inferior colliculus ซีกตรงข้ามของสมองส่วนกลางในที่สุด

Inferior colliculi[แก้]

inferior colliculi (IC) อยู่ด้านล่างต่อจากศูนย์ประมวลข้อมูลทางตาที่เรียกว่า superior colliculus central nucleus ของ IC เป็นรีเลย์ของสัญญาณประสาทเสียงเกือบทั้งหมด และน่าจะช่วยรวมข้อมูล (โดยเฉพาะข้อมูลทิศทางของเสียงจาก superior olivary complex[13] และจาก dorsal cochlear nucleus) ก่อนจะส่งสัญญาณต่อไปที่ทาลามัสและเปลือกสมอง[14]

Primary auditory cortex.PNG

Medial geniculate nucleus[แก้]

medial geniculate nucleus (MGN) หรือ medial geniculate body (MGB) เป็นส่วนของระบบรีเลย์ในทาลามัส ที่สื่อสัญญาณระหว่าง inferior colliculus กับคอร์เทกซ์การได้ยิน (auditory cortex) เป็นโครงสร้างที่มีนิวเคลียสย่อย ๆ ที่แตกต่างกันโดยสัณฐาน โดยใยประสาทนำเข้าและโดยใยประสาทนำออก และโดยรูปแบบการเข้ารหัสข้อมูล เชื่อว่า MGB มีผลต่อการกำหนดและรักษาการใส่ใจ

คอร์เทกซ์การได้ยินปฐมภูมิ[แก้]

คอร์เทกซ์การได้ยินปฐมภูมิ (primary auditory cortex, PAC) เป็นเขตแรกในเปลือกสมองที่รับข้อมูลเสียง การได้ยินเสียงสัมพันธ์กับรอยนูนสมองกลีบขมับส่วนบน (STG) ด้านหลังกลีบซ้าย คือ STG มีโครงสร้างสำคัญหลายอย่างรวมทั้งบริเวณบรอดมันน์ 41 และ 42 ซึ่งเป็นตำแหน่งของ PAC ที่มีหน้าที่รับรู้ลักษณะพื้นฐานของเสียงเช่น เสียงสูงต่ำและจังหวะ นักวิทยาศาสตร์ได้เรียนรู้จากงานในไพรเมตที่ไม่ใช่มนุษย์ว่า PAC สามารถแบ่งออกเป็นส่วนที่ทำหน้าที่โดยเฉพาะ ๆ[15][16][17][18][19][20][21] [[นิวรอน]ของ PAC สามารถมองได้ว่า มีลานรับสัญญาณ (receptive field) คลุมความถี่เสียงช่วงหนึ่ง หรือตอบสนองต่อเสียงสูงเสียงต่ำในระดับหนึ่งโดยเฉพาะ[22] ส่วนนิวรอนที่รวมข้อมูลจากหูทั้งสองจะมีลานสัญญาณเป็นส่วนใดส่วนหนึ่งของปริภูมิเสียง

คอร์เทกซ์การได้ยินทุติยภูมิ (secondary auditory cortex) จะล้อมและเชื่อมกับ PAC โดยเขตทุติยภูมิต่าง ๆ จะเชื่อมกับเขตประมวลข้อมูลต่าง ๆ ของ STG, ของ superior temporal sulcus (STS) ด้านบน (dorsal), และของสมองกลีบหน้า ในมนุษย์ การเชื่อมต่อของเขตเหล่านี้กับ middle temporal gyrus (MTG) น่าจะสำคัญต่อการรู้คำพูด ส่วนสมองด้านหน้าของสมองกลีบขมับ (frontotemporal) ซึ่งเป็นส่วนที่รับรู้เสียง ทำให้เราสามารถจำแนกเสียงต่าง ๆ รวมทั้ง คำพูด ดนตรี หรือเสียงอื่น ๆ

ภาพรวม[แก้]

หูชั้นนอกเป็นกรวยส่งแรงสั่นสะเทือนของเสียงไปให้แก้วหู โดยช่วยเพิ่มแรงดันเสียงในความถี่ระดับกลาง ๆ ส่วนกระดูกหูในหูชั้นกลาง จะขยายแรงสั่นของเสียงประมาณ 20 เท่า ส่วนฐานของกระดูกโกลนจะส่งความสั่นสะเทือนไปยังหูชั้นในผ่าน oval window ซึ่งสั่นของเหลว perilymph ที่มีอยู่ทั่วหูชั้นใน แล้วทำให้ round window โปนออกจากหูชั้นใน เมื่อ oval window โปนเข้า ทั้งท่อ Vestibular duct และ tympanic duct ล้วนเต็มไปด้วย perilymph ส่วนท่อ cochlear duct/partition ที่เล็กกว่าและอยู่ระหว่างท่อทั้งสองเต็มไปด้วย endolymph ซึ่งของเหลวทั้งสองมีระดับไอออนและศักย์ไฟฟ้าที่ต่างกัน[23][24][25][26]

ความสั่นสะเทือนของ perilymph ใน vestibular duct จะงอขนของเซลล์ขนด้านนอก (OHC) ในอวัยวะของคอร์ติ มีผลให้หลั่งโปรตีน prestin ที่ปลายขน ซึ่งทำให้เซลล์ยาวขึ้นหรือสั้นลงเพราะโครงสร้างทางเคมี (ที่เรียกว่า somatic motor) ทำให้มัดขนขยับ และมีฤทธิ์ทางไฟฟ้าต่อการเคลื่อนไหวของ basilar membrane (ที่เรียกว่า hair-bundle motor) การเคลื่อนไหวสองอย่างของเซลล์ขนด้านนอกเช่นนี้ จะขยายแรงสั่นสะเทือนใน perilymph ที่เป็นตัวกระตุ้นเซลล์เองแต่แรกถึง 40 เท่า และเพราะว่า การเคลื่อนไหวทั้งสองขับเคลื่อนโดยปฏิกิริยาทางเคมี แรงสั่นที่ขยายเพิ่มจึงไม่ทำให้เกิดการขยายอีกเพราะต้องใช้เวลาในการฟื้นสภาพ[27]

OHC จะเชื่อมกับเส้นประสาทไม่หุ้มปลอกไมอีลินจาก spiral ganglion ที่สื่อสารได้ทั้งสองด้าน ประมาณใยประสาทหนึ่งต่อขน 30+ เส้น เทียบกับเซลล์ขนด้านใน (IHC) ที่ต่อกับเพียงแต่ใยประสาทนำเข้า แต่ในอัตราใยประสาท 30+ อันต่อขนหนึ่งเส้น มี OHC ในจำนวน 4 เท่าของ IHC และ basilar membrane ก็เป็นเยื่อที่ IHC และ OHC อยู่โดยมาก โดยความกว้างและความแข็งตึงของเยื่อจะเป็นไปตามความถี่เสียงที่ IHC ในตำแหน่งนั้นตรวจจับได้ดีที่สุด ที่ฐานของเยื่อจะเป็นส่วนที่แคบและแข็งตึงที่สุด (ความถี่สูง) และที่ปลายอวัยวะรูปหอยโข่งจะเป็นส่วนที่กว้างที่สุดและแข็งตึงน้อยที่สุด (ความถี่ต่ำ)

ส่วน tectorial membrane เป็นอวัยวะสนับสนุน IHC และ OHC ที่ช่วยขยายแรงสั่นโดยกระตุ้น OHC โดยตรง และกระตุ้น IHC ผ่านของเหลว endolymph ทั้งความกว้างและความแข็งตึงของ tectorial membrane จะคล้ายกับของ basilar membrane เพื่อช่วยในการแยกแยะความถี่เสี่ยง[28][29][30][31][32][33][34][35][36]

ส่วน superior olivary complex (SOC) ในพอนส์ จะเป็นส่วนแรกที่กระแสประสาทจากอวัยวะรูปหอยโข่งซ้ายขวาไปรวมกัน โดยมีนิวเคลียส 14 อันที่กำหนดแล้ว โดยแต่ละส่วนมีชื่อย่อดังต่อไปนี้

  • MSO กำหนดองศาของแหล่งเสียงโดยวัดความแตกต่างระหว่างเวลาที่เสียงมาถึงหูซ้ายขวา
  • LSO ทำเสียงทั้งจากหูทั้งสองข้างให้เท่ากัน (normalization) และใช้ระดับเสียงเพื่อกำหนดองศาของแหล่งเสียง และเป็นตัวส่งสัญญาณต่อไปจาก IHC
  • VNTB เป็นตัวส่งสัญญาณจาก OHC
  • MNTB เป็นส่วนยับยั้ง LSO ผ่านไกลซีน
  • แต่ไกลซีนจะไม่มีผลต่อ LNTB ซึ่งใช้ส่งสัญญาณแบบเร็ว
  • DPO มีระเบียบแบบ tonotopic สำหรับเสียงความถี่สูง
  • DLPO ก็เป็นแบบ tonotopic เช่นกันแต่สำหรับเสียงความถี่ต่ำ
  • VLPO มีหน้าที่เช่นกับ DPO แต่ทำงานกับเขตที่ต่างกัน
  • PVO, CPO, RPO, VMPO, ALPO และ SPON ซึ่งไกลซีนสามารถยับยั้งได้ ล้วนเป็นนิวเคลียสส่งสัญญาณหรือนิวเคลียสยับยั้ง (inhibiting nuclei)[37][38][39][40]

trapezoid body เป็นส่วนที่ใยประสาทจาก cochlear nucleus (CN) ข้ามไขว้ทแยงจากซ้ายไปขวา และจากขวาไปซ้าย โดยมาก การไขว้ทแยงช่วยให้กำหนดทิศทางของเสียงได้[41]

CN สามารถแบ่งออกเป็นเขต ventral CN (VCN) และ dorsal CN (DCN) โดย VCN มีเซลล์หลัก ๆ 3 รูปแบบ คือ

  • Bushy cell จะส่งข้อมูลเกี่ยวกับเวลา โดยรูปร่างของเซลล์จะเป็นตัวการคำนวณค่าเฉลี่ยของค่าเวลาที่ต่าง ๆ กัน
  • Stellate cell (หรือ chopper cell) จะเป็นตัวเข้ารหัสสเปกตรัม (คือ ส่วนยอดและส่วนท้อง) โดยเป็นอัตราการยิงสัญญาณขึ้นอยู่กับความแรงของข้อมูลเสียง (ที่ไม่ใช่ความถี่)
  • Octopus cell จะส่งสัญญาณที่แม่นยำทางเวลามากที่สุด ดังนั้น จึงเป็นตัวแปลความหมายของข้อมูลเวลาในเสียง

ส่วน DCN มีเซลล์หลัก ๆ 2 รูปแบบ และรับข้อมูลจาก VCN

  • Fusiform cell (หรือ pyramidal cells) ประมวลข้อมูลความสูงต่ำของเสียงเพื่อกำหนดทิศทาง เช่น ว่าเสียงมาจากข้างหน้าหรือข้างหลัง
  • Giant cell ยังไม่ชัดเจนว่ามีหน้าที่อะไร

ใยประสาท Cochlear nerve ส่งสัญญาณเสียงจากอวัยวะรูปหอยโข่งไปยังสมอง โดยมนุษย์มีเกิน 30,000 เส้น แต่ละเส้นจะตอบสนองดีที่สุดที่ความถี่หนึ่ง แต่ก็ตอบสนองต่อความถี่หลายระดับด้วย[42][43]

กล่าวอย่างคร่าว ๆ ง่าย ๆ ก็คือ bushy cell ส่งสัญญาณไปยังเขตที่รับข้อมูลเสียงจากทั้งสองข้างใน olivary complex โดยที่ stellate cell จะกำหนดส่วนยอดและส่วนท้องของข้อมูลเสียง และ octopus cell จะกำหนดข้อมูลเกี่ยวกับเวลา

ส่วน lateral lemniscus มีนิวเคลียส 3 อัน คือ dorsal nuclei ตอบสนองข้อมูลเสียงซับซ้อนที่มาจากทั้งสองหู intermediate nuclei และ ventral nuclei จะตอบสนองอย่างกว้าง ๆ แบบซับซ้อนกลาง ๆ Ventral nuclei จะช่วย inferior colliculus (IC) ถอดรหัสแอมพลิจูดของเสียง โดยยิงสัญญาณทั้งแบบเป็นชุด ๆ (phasic) และแบบสม่ำเสมอ (tonic)

IC ได้รับสัญญาณจากเขตต่าง ๆ รวมทั้งที่เกี่ยวกับการเห็น (pretectal area - เพื่อขยับตาไปที่เสียง, superior colliculus - พฤติกรรมต่อและการหันไปทางวัตถุ ตลอดจนการขยับตาแบบ saccade), พอนส์ (superior cerebellar peduncle - การเชื่อมต่อระหว่างทาลามัสกับสมองน้อย เพื่อการได้ยินเสียงและเรียนรู้พฤติกรรมการตอบสนอง), ไขสันหลัง (periaqueductal grey - การได้ยินเสียงและการเคลื่อนไหวโดยสัญชาตญาณ), และทาลามัส การทำงานร่วมกับเขตต่าง ๆ แสดงว่า IC มีส่วนร่วมในพฤติกรรมสะดุ้ง (startle response) และรีเฟล็กซ์ลูกตา (ocular reflexes) นอกจากจะรวมข้อมูลจากประสาทสัมผัสต่าง ๆ แล้ว IC ยังตอบสนองต่อความถี่เสียง ทำให้สามารถตรวจจับเสียงสูงเสียงต่ำได้ IC ยังสามารถกำหนดความแตกต่างทางเวลาของเสียงที่มาจากทั้งสองหูอีกด้วย[44]

medial geniculate nucleus (MGB) แบ่งออกเป็นส่วนล่าง (ventral) ซึ่งเป็นเซลล์รีเลย์หรือเซลล์ยับยั้งข้อมูลเกี่ยวกับความถี่ ความดัง ข้อมูลเสียงจากสองหู โดยส่งข้อมูลเป็นแผนที่ภูมิลักษณ์, ส่วนบน (dorsal) ซึ่งเป็นนิวเคลียสที่รับข้อมูลหลายอย่างและซับซ้อน และมีส่วนเชื่อมโยมกับประสาทสัมผัสทางกาย, และส่วนกลาง (medial) ซึ่งเป็นนิวเคลียสที่ตอบสนองต่อสัญญาณแบบทั้งกว้าง ซับซ้อน และแคบโดยส่งข้อมูลเกี่ยวกับความดังและช่วงเวลาเสียง

ส่วนคอร์เทกซ์การได้ยิน (auditory cortex, AC) มีหน้าที่ทำให้ได้ยินเสียง AC สามารถระบุเสียง (คือบอกว่าเป็นเสียงอะไรโดยชื่อ) และกำหนดแหล่งเสียง โดยจัดระเบียบเป็นแผนที่ภูมิลักษณ์โดยความถี่ คือ เซลล์จุดต่าง ๆ จะตอบสนองต่อการประสานเสียง (harmonies) ช่วงเวลา และความสูงต่ำของเสียงที่ต่าง ๆ กัน AC ซีกขวาจะไวต่อเสียงสูงต่ำมากกว่า ในขณะที่ซีกซ้ายจะไวต่อความแตกต่างของลำดับเสียงมากกว่า[45][46]

คอร์เทกซ์กลีบหน้าผากส่วนหน้าส่วน rostromedial (ตรงกลางด้านหหน้า) และ ventrolateral (ด้านข้างส่วนล่าง) จะทำงานตอบสนองต่อปริภูมิความถี่ (tonal space) และเมื่อบันทึกเสียงในความจำระยะสั้น ตามลำดับ[47] ส่วน transverse temporal gyrus รวมบริเวณเวอร์นิเกและส่วนทำหน้าที่ย่อยของมัน มีหน้าที่เกี่ยวกับอารมณ์-เสียง อารมณ์-สีหน้า และเสียง-ความจำ ส่วน entorhinal cortex เป็นส่วนของระบบฮิปโปแคมปัสที่ช่วยบันทึกความจำเกี่ยวกับสิ่งที่เห็น-ที่ได้ยิน[48][49]

ส่วนรอยนูนซูปรามาร์จินัล (supramarginal gyrus, SMG) ช่วยให้เข้าใจภาษาและให้ตอบสนองอย่างเห็นใจผู้อื่น คือ SMG จะเชื่อมเสียงกับคำพร้อมกับรอยนูนแองกูลาร์เพื่อช่วยเลือกคำพูด SMG จะรวมข้อมูลทั้งทางสัมผัส ทางการเห็น และทางการได้ยิน[50][51]

ความสำคัญทางคลินิก[แก้]

การได้ยินของมนุษย์ขึ้นอยู่กับสมรรถภาพของคอเคลียในการแยกแยะทั้งเสียงสูงต่ำ และเสียงดังค่อย การมีหูพิการอาจทำให้เกิดผลเสียทั้งในด้านพัฒนาการ สังคม จิตใจ และการรอบรู้สิ่งแวดล้อม มนุษย์อาศัยการปฏิสัมพันธ์กับบุคคลอื่นเพื่อทั้งพัฒนาการและเพื่อสังคม เด็กที่ตอนแรกดูว่ามีปัญหาพัฒนาการทางเชาวน์ปัญญาจริง ๆ อาจมีปัญหาการได้ยิน ดังนั้น จึงจำเป็นต้องตรวจสอบเด็ก ๆ ว่าสามารถได้ยินเสียงดีหรือไม่ เด็กที่รักษาให้ได้ยินปกติจะสามารถมีพัฒนาการในระดับที่สมควรต่อไปได้ ผู้ใหญ่ที่ไม่ได้ยินจะทำให้ห่างจากญาติพี่น้องครอบครัวและเพื่อน ทำให้ไม่สามารถดำรงความสัมพันธ์ ซึ่งอาจมีผลทำให้เกิดความซึมเศร้า จนถึงฆ่าตัวตาย[52]

การได้ยินยังสำคัญในเรื่องการรอบรู้สิ่งแวดล้อมและการเห็นภยันตรายที่อาจมาถึงตัว เพราะว่า บ่อยครั้งเราจะสามารถได้ยินสิ่งที่กำลังเข้ามาใกล้ ๆ เราก่อนที่เราจะเห็น แม้บางครั้งเราอาจจะยังไม่รู้ด้วยซ้ำว่าได้ยินเสียงนั้นแล้ว หูที่พิการย่อมทำให้สมรรถภาพในการรู้สิ่งแวดล้อมนี้ลดน้อยถอยลง[52]

การเสียการได้ยินบ่อยครั้งเกิดขึ้นพร้อมกับอาการมีเสียงในหู (tinnitus) ซึ่งแม้จะน้อยครั้งก็สามารถเพราะเกิดรอยโรคในวิถีประสาทการได้ยิน แต่บ่อยครั้งเกิดจากสาเหตุที่ไม่ชัดเจน และบางครั้ง จะเกิดในระดับเสียงความถี่สูง ที่อวัยวะไม่สามารถรับรู้แล้ว ทำให้ระบบประสาทเกิดความไวและออกอาการเหมือนกับได้ยินเสียงในความถี่นั้น (โดยคล้ายกับกลุ่มอาการหลงผิดว่าแขนขายังคงอยู่) เสียงในหูสามารถกวนประสาทของผู้ได้ยินได้จนทำให้เกิดอาการซึมเศร้าและผลอื่น ๆ ที่ตามมา[52]

ประเด็นเหล่านี้ มีผลทางคลินิกเกี่ยวกับการได้ยิน คือ

  • Auditory brainstem response (การตอบสนองของก้านสมองต่อการได้ยิน) และ ABR audiometry test เพื่อทดสอบการได้ยินของทารก
  • Auditory processing disorder (โรคเกี่ยวกับการได้ยินทางสมอง)
  • ผลของเสียงต่อสุขภาพ
  • เสียงในหู
  • Endaural phenomena (การได้ยินเสียงที่ไม่มีจริงที่ไม่ใช่ประสาทหลอน)

ดูเพิ่ม[แก้]

เชิงอรรถและอ้างอิง[แก้]

  1. "auditory", ศัพท์บัญญัติอังกฤษ-ไทย, ไทย-อังกฤษ ฉบับราชบัณฑิตยสถาน (คอมพิวเตอร์) รุ่น ๑.๑ ฉบับ ๒๕๔๕, "(แพทยศาสตร์) ๑. -ฟัง ๒. -ได้ยิน ๓. -หู [= aural; otic; otor]" 
  2. 2.0 2.1 2.2 2.3 2.4 Principles of Neural Science, 5th edition (2013), "Chapter 31: The Inner Ear", pp. 656
  3. Konishi, T; Hamrick, FE; Walsh, FJ (1978). "Ion transport in guinea pig cochlea. I. Potassium and sodium transport". Acta Otolaryngol 86 (1-2): 22–34. doi:10.3109/00016487809124717. PMID 696294. 
  4. Miller, JD (2007). "Sex differences in the length of the organ of Corti in humans". The Journal of the Acoustical Society of America 121 (4): EL151–5. doi:10.1121/1.2710746. 
  5. Principles of Neural Science, 5th edition (2013), "Chapter 31: The Inner Ear", pp. 655
  6. 6.0 6.1 Principles of Neural Science, 5th edition (2013), "Chapter 31: The Inner Ear", pp. 661
  7. Lelli, A.; Kazmierczak, P.; Kawashima, Y.; Muller, U.; Holt, J. R. (2010). "Development and Regeneration of Sensory Transduction in Auditory Hair Cells Requires Functional Interaction Between Cadherin-23 and Protocadherin-15". Journal of Neuroscience 30 (34): 11259–11269. doi:10.1523/JNEUROSCI.1949-10.2010. PMC 2949085. PMID 20739546. 
  8. Peng, AW.; Salles, FT.; Pan, B.; Ricci, AJ. (2011). "Integrating the biophysical and molecular mechanisms of auditory hair cell mechanotransduction.". Nature Communications 2: 523–. doi:10.1038/ncomms1533. PMC 3418221. PMID 22045002. 
  9. "Meddean - CN VIII. Vestibulocochlear Nerve". Stritch School of Medicine, Loyola University Chicago. 
  10. Middlebrooks, JC (2009). "Auditory System: Central Pathways". In Squire. Encyclopedia of Neuroscience. Academic Press. pp. 745–752, here: p. 745 f. 
  11. Mendoza, John E. (2011). "Trapezoid Body". In Kreutzer, Jeffrey S; DeLuca, John; Caplan, Bruce. Encyclopedia of Clinical Neuropsychology. Springer New York. pp. 2549–2549. ISBN 978-0-387-79947-6. สืบค้นเมื่อ 2015-03-01. 
  12. Moore, JK (2000-11). <403::AID-JEMT8>3.0.CO;2-Q "Organization of the human superior olivary complex". Microsc. Res. Tech. 51 (4): 403–12. doi:10.1002/1097-0029(20001115)51:4<403::AID-JEMT8>3.0.CO;2-Q. PMID 11071722. 
  13. Oliver, DL (2000-11). <355::AID-JEMT5>3.0.CO;2-J "Ascending efferent projections of the superior olivary complex". Microsc. Res. Tech. 51 (4): 355–63. doi:10.1002/1097-0029(20001115)51:4<355::AID-JEMT5>3.0.CO;2-J. PMID 11071719. 
  14. Demanez, JP; Demanez, L (2003). "Anatomophysiology of the central auditory nervous system: basic concepts". Acta Otorhinolaryngol Belg 57 (4): 227–36. PMID 14714940. 
  15. Pandya, DN (1995). "Anatomy of the auditory cortex". Rev. Neurol. (Paris) 151 (8-9): 486–94. PMID 8578069. 
  16. Kaas, JH; Hackett, TA (1998). "Subdivisions of auditory cortex and levels of processing in primates". Audiol. Neurootol. 3 (2-3): 73–85. doi:10.1159/000013783. PMID 9575378. 
  17. Kaas, JH; Hackett, TA; Tramo, MJ (1999-04). "Auditory processing in primate cerebral cortex". Curr. Opin. Neurobiol. 9 (2): 164–70. doi:10.1016/S0959-4388(99)80022-1. PMID 10322185. 
  18. Kaas, JH; Hackett, TA (2000-10). "Subdivisions of auditory cortex and processing streams in primates". Proc. Natl. Acad. Sci. U.S.A. 97 (22): 11793–9. doi:10.1073/pnas.97.22.11793. PMC 34351. PMID 11050211. 
  19. Hackett, TA; Preuss, TM; Kaas, JH (2001-12). "Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans". J. Comp. Neurol. 441 (3): 197–222. doi:10.1002/cne.1407. PMID 11745645. 
  20. Scott, SK; Johnsrude, IS (2003-02). "The neuroanatomical and functional organization of speech perception". Trends Neurosci. 26 (2): 100–7. doi:10.1016/S0166-2236(02)00037-1. PMID 12536133. 
  21. Tian, B; Reser, D; Durham, A; Kustov, A; Rauschecker, JP (2001-04). "Functional specialization in rhesus monkey auditory cortex". Science 292 (5515): 290–3. doi:10.1126/science.1058911. PMID 11303104. 
  22. Wang, X (2013). "The harmonic organization of auditory cortex". Front Syst Neurosci 7: 114. doi:10.3389/fnsys.2013.00114. PMC 3865599. PMID 24381544. 
  23. Tillotson, Joanne. McCann, Stephanie. Kaplan’s Medical Flashcards. Apr. 02. 2013.
  24. Albertine, Kurt. Barron’s Anatomy Flash Cards
  25. "How We Hear." Australian Hearing. 09 Dec. 2013. Web. 27 Mar. 2016.
  26. "How Does My Hearing Work?" How Does My Hearing Work? 2011. Web. 27 Mar. 2016.
  27. Zheng, Jing, and Weixing Shen. "Prestin Is the Motor Protein of Cochlear Outer Hair Cells." Nature.com. Nature Publishing Group, 11 May 2000. Web. 27 Mar. 2016.
  28. Zwislocki, Jozef J., and Lisa K. Cefaratti. "Tectorial Membrane II: Stiffness Measurements in Vivo." Tectorial Membrane II: Stiffness Measurements in Vivo. Nov. 1989. Web. 01 Apr. 2016.
  29. Richter, Claus-Peter, and Gulam Emadi. "Tectorial Membrane Stiffness Gradients." Science Direct. 15 Sept. 2007. Web. 2 Apr. 2016.
  30. Meaud, Julien, and Karl Grosh. "The Effect of Tectorial Membrane and Basilar Membrane Longitudinal Coupling in Cochlear Mechanics." AIP. Acoustical Society of America, 2010. Web. 2 Apr. 2016.
  31. Gueta, Rachel, and David Barlam. "Measurement of the Mechanical Properties of Isolated Tectorial Membrane Using Atomic Force Microscopy." Measurement of the Mechanical Properties of Isolated Tectorial Membrane Using Atomic Force Microscopy. 10 Aug. 2006. Web. 02 Apr. 2016.
  32. Freemana, Dennis M., and C. Cameron Abnete. "Dynamic Material Properties of the Tectorial Membrane: A Summary." Science Direct. June 2003. Web. 02 Apr. 2016.
  33. Legan, P. Kevin, and Victoria A. Lukashkina. "A Targeted Deletion in α-Tectorin Reveals That the Tectorial Membrane Is Required for the Gain and Timing of Cochlear Feedback." Science Direct. Oct. 2000. Web. 2 Apr. 2016.
  34. B, Canlon. "The Effect of Acoustic Trauma on the Tectorial Membrane, Stereocilia, and Hearing Sensitivity: Possible Mechanisms Underlying Damage, Recovery, and Protection." Europe PMC. Karolinska Institute, 1988. Web. 02 Apr. 2016.
  35. Zwislocki, J. J. "Tectorial Membrane: A Possible Sharpening Effect on the Frequency Analysis in the Cochlea." Taylor & Francis. 1979. Web. 02 Apr. 2016.
  36. Teudt, I. U., and C. P. Richter. "Basilar Membrane and Tectorial Membrane Stiffness in the CBA/CaJ Mouse." Springer. 28 May 2014. Web. 02 Apr. 2016.
  37. Thompson, A.M., and B.R. Schofield. "Afferent Projections of the Superior Olivary Complex." Wiley Online Library. 15 Nov. 2000. Web. 27 Mar. 2016.
  38. Oliver, Douglas L. "Ascending Efferent Projections of the Superior Olivary Complex." Wiley Online Library. 15 Nov. 2000. Web. 27 Mar. 2016.
  39. Moore, Jean K. "Organization of the Human Superior Olivary Complex." Wiley Online Library. 15 Nov. 2000. Web. 27 Mar. 2016.
  40. Yang, Lichaun, Pablo Monsivais, and Edwin W. Rubel. "The Superior Olivary Nucleus and Its Influence on Nucleus Laminaris: A Source of Inhibitory Feedback for Coincidence Detection in the Avian Auditory Brainstem." JNeurosci. 15 Mar. 1999. Web. 27 Mar. 2016.
  41. Paolini, Antonio G., and John V. FitzGerald. "Temporal Processing from the Auditory Nerve to the Medial Nucleus of the Trapezoid Body in the Rat." Science Direct. Sept. 2001. Web. 27 Mar. 2016.
  42. Bajo, Victoria M., and Miguel A. Merchan. "Topographic Organization of the Dorsal Nucleus of the Lateral Lemniscus in the Cat." Wiley Online Library. 10 May 1999. Web. 27 Mar. 2016.
  43. Young, Eric D., and Kevin A. Davis. "Circuitry and Function of the Dorsal Cochlear Nucleus." Springer Link. 2002. Web. 27 Mar. 2016.
  44. Oliver, Douglas M. "Neuronal Organization in the Inferior Colliculus." Springer. 2005. Web. 27 Mar. 2016.
  45. Janata, Petr, and Jeffry L. Birk. "The Cortical Topography of Tonal Structures Underlying Western Music." Science. 13 Dec. 2002. Web. 27 Mar. 2016.
  46. Morosan, P., and J. Rademacher. "Human Primary Auditory Cortex: Cytoarchitectonic Subdivisions and Mapping into a Spatial Reference System."Science Direct. Apr. 2001. Web. 27 Mar. 2016.
  47. Romanski, L. M., and B. Tian. "Dual Streams of Auditory Afferents Target Multiple Domains in the Primate Prefrontal Cortex." Nature.com. Nature Publishing Group, 1999. Web. 27 Mar. 2016.
  48. Badre, David, and Anthony D. Wagner. "Left Ventrolateral Prefrontal Cortex and the Cognitive Control of Memory." Science Direct. 2007. Web. 27 Mar. 2016.
  49. Amunts, K., and O. Kedo. "Cytoarchitectonic Mapping of the Human Amygdala, Hippocampal Region an." Springer. Dec. 2005. Web. 27 Mar. 2016.
  50. Penniello, Marie-Jose. "A PET Study of the Functional Neuroanatomy of Writing Impairment in Alzheimer's Disease The Role of the Left Supramarginal and Left Angular Gyri." Oxford University Press. Ed. Dimitri M. Kullmann. 01 June 1995. Web. 27 Mar. 2016.
  51. Stoeckel, Cornelia, and Patricia M. Gough. "Supramarginal Gyrus Involvement in Visual Word Recognition." Science Direct. Oct. 2009. Web. 27 Mar. 2016.
  52. 52.0 52.1 52.2 Principles of Neural Science, 5th edition (2013), "Chapter 31: The Inner Ear", pp. 654-655

แหล่งข้อมูลอื่น[แก้]