ตัวรับแรงกล
ตัวรับแรงกล (อังกฤษ: mechanoreceptor) เป็นปลายประสาทรับความรู้สึกที่ตอบสนองต่อสิ่งเร้าที่เป็นแรงกล เช่น สัมผัสหรือเสียง[1] มีตัวรับแรงกลประเภทต่าง ๆ ในระบบประสาทมากมายโดยต่อไปนี้เป็นเพียงตัวอย่างเท่านั้น ในระบบรับความรู้สึกทางกาย ตัวรับแรงกลทำให้รู้สัมผัสและอากัปกิริยาได้ (โดยมี Pacinian corpuscle เป็นตัวไวแรงกลมากที่สุดในระบบ[2]) ในการรับรู้สัมผัส ผิวหนังที่ไม่มีขน/ผม (glabrous skin) ที่มือและเท้า ปกติจะมีตัวรับแรงกล 4 อย่างหลัก ๆ คือ Pacinian corpuscle, Meissner's corpuscle, Merkel nerve ending, และ Ruffini ending และผิวที่มีขนก็มีตัวรับแรงกล 3 อย่างเหมือนกันยกเว้น Meissner's corpuscle บวกเพิ่มกับตัวรับแรงกลอื่น ๆ รวมทั้งตัวรับความรู้สึกที่ปุ่มรากผม ในการรับรู้อากัปกิริยา ตัวรับแรงกลช่วยให้รู้ถึงแรงหดเกร็งของกล้ามเนื้อและตำแหน่งของข้อต่อ มีประเภทรวมทั้ง muscle spindle 2 ชนิด, Golgi tendon organ, และ Joint capsule[3] ในบรรดาตัวรับแรงกลทั้งหมด เซลล์ขนในคอเคลียของระบบการได้ยินไวที่สุด[ต้องการอ้างอิง] โดยมีหน้าที่ถ่ายโอนคลื่นเสียงในอากาศเป็นสัญญาณประสาทเพื่อส่งไปยังสมอง แม้แต่เอ็นปริทันต์ (periodontal ligament) ก็มีตัวรับแรงกลด้วย[4] ซึ่งช่วยให้กรามผ่อนแรงเมื่อกัดถูกวัตถุที่แข็ง ๆ
งานวิจัยเรื่องตัวรับแรงกลในมนุษย์ได้เริ่มขึ้นในปลายคริสต์ทศวรรษ 1970 ที่นักวิชาการคู่หนึ่ง (Vallbo และ Johansson) วัดปฏิกิริยาของตัวรับแรงกลที่ผิวหนังกับอาสาสมัคร[5]
ในระบบรับความรู้สึกทางกาย
[แก้]กลไกรับความรู้สึก
[แก้]ปลายประสาทรับแรงกลในระบบรับความรู้สึกทางกาย จะมีลักษณะทางกายวิภาคโดยเฉพาะ ๆ ที่เหมาะกับสิ่งเร้า และโดยทั่วไปอาจเป็นแบบหุ้มปลอก/แคปซูล (เช่น Pacinian corpuscle) อันเป็นเนื้อเยื่อนอกเซลล์ประสาท หรืออาจเป็นปลายประสาทอิสระ[6] เมื่อเนื้อเยื่อรอบ ๆ ปลายประสาทแปรรูปเพราะสิ่งเร้าที่เหมาะสม (เช่น แรงสั่นความถี่สูง) โปรตีนที่ผิวของเซลล์ประสาทก็จะแปรรูปด้วย ทำให้ไอออน Na+ และ Ca2+ ไหลเข้าผ่านช่องไอออนของเซลล์เป็นกระแสไฟฟ้าที่เรียกว่าศักย์ตัวรับความรู้สึก (receptor potential) ซึ่งถ้าถึงขีดเริ่มเปลี่ยนก็จะทำให้เซลล์สร้างศักยะงานส่งไปยังระบบประสาทกลาง โดยเริ่มต้นส่งไปที่ไขสันหลังหรือก้านสมอง[7][8] ตัวรับความรู้สึกแต่ละประเภท ๆ จากตำแหน่งโดยเฉพาะ ๆ จะมีใยประสาทเป็นของตนเองจนถึงไขสันหลังตลอดไปจนถึงสมอง[9] ความเฉพาะเจาะจงเช่นนี้ทำให้ระบบประสาทกลางจำแนกได้ว่า เป็นความรู้สึกประเภทไรและมาจากส่วนไหนของร่างกาย
การเปิดปิดของช่องไอออน
[แก้]มีการเสนอรูปแบบการทำงานของช่องไอออน 3 อย่าง โดยเนื่องกับการแปรรูปของเนื้อเยื่อที่ปลายประสาท คือ[11]
- การแปรรูปจะกดดันให้โปรตีนช่องไอออนที่ปลายประสาทแปรรูป แล้วเปิดปิดช่องไอออนโดยตรง ข้อดีคือ ช่องไอออนจะสามารถเปิดปิดได้อย่างรวดเร็ว ทำให้ปลายประสาทไวในการตอบสนอง
- การแปรรูปจะเชื่อมกับกลไกการเปิดปิดช่องไอออนผ่านโครงสร้างนอกเซลล์ (เช่นใยเชื่อมปลายของเซลล์ขนในหูชั้นใน และมักจะอุปมาเหมือนกับเป็นสปริงที่เชื่อมกับประตูเปิดปิดช่องไอออน) แล้วเปิดปิดช่องไอออนโดยตรง ข้อดีก็คือ ช่องไอออนจะสามารถเปิดปิดได้อย่างรวดเร็ว ทำให้ปลายประสาทไวในการตอบสนอง แรงกลที่เปิดปิดช่องไอออนยังสามารถเป็นทั้งในแนวตั้งฉากหรือแนวขนานกับผิวเซลล์
- การแปรรูปจะกดดันให้โปรตีนไวแรงกลต่างหากที่ปลายประสาทแปรรูป ซึ่งทำให้มีการปล่อยโมเลกุลส่งสัญญาณภายในเซลล์ผ่าน second messenger system แล้วเปิดปิดช่องไอออนโดยอ้อม ข้อเสียก็คือ เนื่องจากเป็นกลไกโดยอ้อม จึงทำงานได้ช้ากว่ากลไกโดยตรง ข้อดีก็คือ การแปรรูปของโปรตีนที่ไวแรงกลในจุด ๆ เดียว สามารถเปิดปิดช่องไอออนหลายตัวรอบ ๆ ได้ และกระบวนการสามารถปรับขยายสัญญาณที่ได้รับได้
วิถีประสาท
[แก้]- ดูเพิ่มเติมที่ "วิถีประสาทในระบบรับความรู้สึกทางกาย"
วิถีประสาทรับความรู้สึกทางกายที่ตัวรับความรู้สึกส่งสัญญาณไปยังระบบประสาทกลางเพื่อการรับรู้เหนือจิตสำนึก โดยปกติจะมีนิวรอนส่งสัญญาณต่อ ๆ กันยาว 3 ตัว คือ first order neuron, second order neuron, และ third order neuron[12]
ระบบประสาทที่ส่งข้อมูลเกี่ยวกับสัมผัสละเอียดและอากัปกิริยาไปยังคอร์เทกซ์รับความรู้สึกทางกายรวม[13]
- การส่งข้อมูลจากร่างกายรวมศีรษะครึ่งหลัง ผ่านไขสันหลังไปยังทาลามัส แล้วส่งต่อไปยังคอร์เทกซ์รับความรู้สึกทางกายตามวิถีประสาท Dorsal column-medial lemniscus pathway
- first order neuron จะมีตัวเซลล์อยู่ที่ปมประสาทรากหลัง (dorsal root ganglion) ที่ไขสันหลัง ซึ่งส่งแอกซอนขึ้นตาม dorsal column ในไขสันหลังซีกร่างกายเดียวกันไปยัง second order neuron
- second order neuron อยู่ที่ dorsal column nuclei ในก้านสมอง ซึ่งก็ส่งแอกซอนข้ามไขว้ทแยง (decussate) ที่ก้านสมองเช่นกัน (caudal medulla[14]) แล้วขึ้นผ่านวิถีประสาท medial lemniscus ไปยังทาลามัส โดยข้อมูลทางสัมผัสจะไปสุดที่ ventral posteriorlateral nucleus (VPL) และข้อมูลเกี่ยวกับอากัปกิริยาจะไปสุดที่ ventral posterior superior nucleus (VPS)[15]
- third order neuron ซึ่งมีตัวเซลล์ในทาลามัส จะส่งสัญญาณไปสุดที่คอร์เทกซ์รับความรู้สึกทางกาย (somatosensory cortex/postcentral gyrus) ของสมองกลีบข้าง โดยข้อมูลเกี่ยวกับสัมผัสจะส่งไปที่บริเวณ "3b" เป็นหลัก และข้อมูลเกี่ยวกับอากัปกิริยาที่บริเวณ "3a" เป็นหลัก[16]
- การส่งข้อมูลจากศีรษะส่วนหน้ารวมทั้งใบหน้า ผ่านก้านสมองไปยังทาลามัส แล้วส่งต่อไปยังคอร์เทกซ์รับความรู้สึกทางกายตามวิถีประสาท Trigeminothalamic tract
- first order neuron จะอยู่ที่ปมประสาท (ganglion) ของเส้นประสาทสมองรวมทั้ง trigeminal (CN V), facial (CN VII), glossopharyngeal (CN IX), และ vagus (CN X) ซึ่งจะส่งแอกซอนไปที่ second order neuron ในก้านสมองซีกร่างกายเดียวกัน
- second order neuron อยู่ที่ trigeminal nuclei[17][18] ซึ่งส่งแอกซอนข้ามไขว้ทแยง (decussate) ไปด้านตรงข้ามที่ก้านสมอง (mid-pons[14]) โดยเป็นส่วนของ Trigeminothalamic tract[19] ไปยังทาลามัส โดยข้อมูลทางสัมผัสจะไปสุดที่ ventral posteriormedial nucleus (VPM) และข้อมูลเกี่ยวกับอากัปกิริยาจะไปสุดที่ ventral posterior superior nucleus (VPS)[15]
- third order neuron ซึ่งมีตัวเซลล์ในทาลามัส จะส่งสัญญาณไปสุดที่คอร์เทกซ์รับความรู้สึกทางกาย (somatosensory cortex/postcentral gyrus) ของสมองกลีบข้าง โดยข้อมูลเกี่ยวกับสัมผัสจะส่งไปที่บริเวณ "3b" เป็นหลัก และข้อมูลเกี่ยวกับอากัปกิริยาที่บริเวณ "3a" เป็นหลัก[16]
ให้สังเกตว่า ventral posterior superior nucleus (VPS) ปกติเคยจัดเป็นส่วนหนึ่งของ ventral posterior nucleus (VPN) จนกระทั่งงานศึกษากับลิงโลกใหม่สกุล Saimiri (squirrel monkey) ปี 2527 เสนอว่า มันเป็นนิวเคลียสที่มีลักษณะต่างจาก VPN ซึ่ง VPS เป็นส่วน[16][20] แต่ปรากฏว่านักวิชาการยังไม่ใช้นิยามเหล่านี้เหมือน ๆ กัน
นอกจากวิถีประสาทหลัก ๆ เช่นนี้แล้ว ยังมีวิถีอื่น ๆ เช่น Dorsal spinocerebellar tract ซึ่งส่งข้อมูลเกี่ยวกับอากัปกิริยาจากร่างกายส่วนล่างเริ่มตั้งแต่เส้นประสาทไขสันหลังระดับ T1 ไปยังสมองน้อย ตัว first order neuron อยู่ที่ปมประสาทรากหลัง ซึ่งส่งแอกซอนไปยัง second order neuron ที่ Clarke's nucleus ในไขสันหลัง (T1-L2) ซีกร่างกายเดียวกัน ซึ่งก็จะส่งแอกซอนตาม Dorsal spinocerebellar tract ไปสุดที่สมองน้อยในซีกร่างกายเดียวกัน แต่ก็มีสาขาแยกต่างหากไปสุดที่ dorsal column nuclei (nucleus X และ Z ใกล้ ๆ กับ nucleus gracilis[21]) ในที่ third order neuron จะส่งแอกซอนข้ามไขว้ทแยงไปรวมกับวิถีประสาท medial lemniscus แล้วไปสุดที่ส่วน Ventral posterolateral nucleus (VPL) ของทาลามัส[22][23]
การป้อนกลับ
[แก้]งานวิจัยปี 2552 ตรวจดูบทบาทของตัวรับแรงกลที่หนัง (cutaneous mechanoreceptor) ในการให้ข้อมูลป้อนกลับเพื่อควบคุมกล้ามเนื้ออย่างละเอียด (fine motor control)[24] ศักยะงานนำเข้าเดี่ยว ๆ จาก Meissner's corpuscle, Pacinian corpuscle, และ Ruffini ending สัมพันธ์กับการทำงานของกล้ามเนื้อโดยตรง เทียบกับ Merkel nerve ending ที่ไม่ทำให้กล้ามเนื้อทำงาน[25]
ตัวรับแรงกลที่หนัง
[แก้]ใยประสาทรับแรงกลแบบต่าง ๆ รับรู้ความรู้สึกและมีลักษณะที่ต่าง ๆ กันซึ่งสามารถใช้จัดหมวดหมู่ รวมทั้งสัณฐานที่ปลาย ขนาดแอกซอน ลานรับสัญญาณ การตอบสนองตามเวลา/อัตราการปรับตัว และสิ่งเร้าที่เหมาะสม ใยประสาทจะส่งความรู้สึกที่ต่าง ๆ กันเช่นนี้ไปยังระบบประสาทกลางตามวิถีประสาทที่ขนานแยกจากกัน[26]
จำแนกตามสัณฐาน
[แก้]ในการรับรู้สัมผัสที่มือและเท้า ผิวหนังที่ไม่มีผม/ขนจะมีตัวรับแรงกล 4 ประเภทหลัก ๆ[27] แต่ละประเภทมีรูปร่างเหมาะกับหน้าที่ของตน มีแคปซูลพิเศษหุ้ม และมีขีดเริ่มเปลี่ยนต่ำ (low threshold)
- Meissner's corpuscle (tactile corpuscle) เป็นปลายประสาทมีแคปซูลหุ้ม ซึ่งประกอบด้วยเซลล์สนับสนุนแบน ๆ จัดเป็นชั้นขวาง ๆ อันเกิดมาจากปลอกไมอีลิน (Schwann cell) เป็นเนื้อเยื่อเกี่ยวพันเต็มไปด้วยน้ำ มีรูปร่างทรงกระบอก[28] ยาวระหว่าง 30-140 ไมโครเมตร และมีเส้นผ่านศูนย์กลางระหว่าง 40-60 ไมโครเมตร ตอบสนองต่อสัมผัสละเอียดและแรงดัน[29] โดยที่มือจะทำให้รู้สึกสัมผัสในเบื้องต้นเมื่อถูกวัสดุหรือเมื่อวัสดุลื่นมือ ทำให้รู้สึกลายผิววัสดุ และแรงสั่นที่ความถี่ระหว่าง 1-300 เฮิรตซ์โดยไวสุดที่ 50 เฮิรตซ์[30] (2-50 เฮิรตซ์[31]) แต่ละตัวจะมีแอกซอนส่งมาถึง 2-5 ใย[32]
- Merkel nerve ending เป็นปลายประสาทมีมีเซลล์เยื่อบุผิวหุ้มเป็นแคปซูล (encapsulated) ค่อนข้างแข็ง ซึ่งมีเส้นผ่าศูนย์กลางประมาณ 10 ไมโครเมตร[33] ตรวจจับแรงกดดันที่ต่อเนื่อง ไวเป็นพิเศษต่อขอบ มุม และปลายแหลม[27] และตอบสนองต่อแรงสั่นที่ความถี่ระหว่าง 0-100 Hz โดยไวสุดที่ความถี่ 5 Hz[34] (0.3-3 Hz[31]) แต่ละตัวอาจจะมีแอกซอนส่งมาถึงมากกว่าหนึ่งใย[35]
- Pacinian corpuscles (lamellar corpuscle) เป็นปลายประสาทซึ่งหุ้มด้วยเซลล์ที่ไม่ใช่เซลล์ประสาทมีลักษณะเป็นชั้น ๆ คล้ายหัวหอมที่เต็มไปด้วยน้ำในระหว่าง[27] มีขนาดใหญ่และโดยคร่าว ๆ เป็นรูปวงรีทรงกระบอกและยาว 1 มม. ตรวจจับความสั่นที่ถี่สูงกว่าระหว่าง 5-1,000 Hz โดยไวที่สุดที่ความถี่ 200 Hz[30] เมื่อจับของที่ใหญ่[31] แต่ละตัวมีแอกซอนส่งมาถึงเพียงแค่ใยเดียว[36]
- Ruffini ending (bulbous corpuscle) เป็นโครงสร้างยาวรูปกระสวยที่หุ้มใยคอลลาเจนไว้ด้านใน[36] โดยจะทอดไปในแนวขนานกับทิศทางที่ทำให้รู้สึกยืด[37] ใยประสาทจะวิ่งพันกับใยคอลลาเจนในแคปซูล[36] ตรวจจับความตึง นอกจากที่ผิวหนัง ยังมีอยู่ในเอ็นยึดข้อต่อ ปลอกหุ้มข้อต่อ[38] และเอ็นปริทันต์ (periodontal ligament) ด้วย[4] แต่ละตัวมีแอกซอนส่งมาถึงเพียงแค่ใยเดียว[39]
จำแนกตามขนาดใยประสาท
[แก้]ในระบบรับความรู้สึก ใยประสาทนำเข้าจะมีขนาดต่าง ๆ โดยจัดเป็นหมวด ๆ ขึ้นอยู่ว่าเป็นใยประสาทจากกล้ามเนื้อหรือที่ผิวหนัง[40][41]
ปลอกไมอีลิน | เส้นผ่าศูนย์กลาง (µm) | ความเร็ว (m/s) | จากกล้ามเนื้อ | จากผิวหนัง | ตัวรับแรงกล |
---|---|---|---|---|---|
หนา | 12-20 | 72-120 | I | Aα | ตัวรับแรงกลเกี่ยวกับอากัปกิริยา |
กลาง | 6-12 | 35-75 | II | Aβ | Merkel, Meissner, Pacinian, Ruffini |
บาง | 1-6 | 4-36 | III | Aδ | ปลายประสาทอิสระ |
ไม่มี | 0.2-1.5 | 0.4-2.0 | IV | C | ปลายประสาทอิสระ |
ในการรับแรงกลที่ผิวหนัง ใยประสาทรับแรงกลซึ่งหุ้มปลายพิเศษทั้งหมดมีปลอกไมอีลินหุ้มแบบ Aβ[41] ส่วนตัวรับแรงกลที่ผิวหนังแบบอื่น ๆ จะมีใยประสาทขนาด Aδ, และ C ขึ้นอยู่กับชนิด[6] ดังนั้น โดยทั่วไปแล้ว ข้อมูลเกี่ยวกับการสัมผัสซึ่งมาจากตัวรับแรงกลหุ้มแคปซูลพิเศษ จึงส่งไปยังระบบประสาทกลางได้อย่างรวดเร็ว
จำแนกตามลานรับสัญญาณ
[แก้]ลานรับสัญญาณของใยประสาทรับแรงกลหนึ่ง ๆ ที่ผิวหนังก็คือ พื้นที่บนผิวหนังที่มันสามารถรับรู้สิ่งเร้าที่เหมาะสม[36] โดยที่ต่าง ๆ จะมีขนาดต่างกันมาก ขึ้นอยู่กับการแตกสาขาของปลายประสาท (พุ่มสาขาที่เล็กก็จะทำให้มีลานสัญญาณเล็ก) และความหนาแน่นของใยประสาทในเขตนั้น[41]
ใยประสาทจะมีอย่างหนาแน่นในบริเวณที่จำเป็นต้องได้สัมผัสที่ละเอียด ซึ่งก็จะทำให้มีลานสัญญาณเล็กในบริเวณนั้นด้วย[41] เช่น ที่ปลายนิ้วมือและริมฝีปาก ความหนาแน่นของใยประสาททั้งแบบปรับตัวช้า ๆ ชนิด I (Merkel ending) และแบบปรับตัวเร็วชนิด I (Meissner's corpuscle) จะเพิ่มขึ้นอย่างสูง ใยประสาท 2 ชนิดนี้มีลานรับสัญญาณเล็ก ๆ ของตนโดยเฉพาะ ๆ และเชื่อว่าเป็นมูลฐานให้ใช้นิ้วในงานละเอียดอ่อนได้ เช่น ตรวจลาย ตรวจความลื่น และแรงสั่น ส่วนในเขตร่างกายที่ไม่จำเป็นต้องรับสัมผัสแม่นยำเท่า เช่นที่ปลายแขนและหลัง ใยประสาทรับแรงกลมักจะมีลานรับสัญญาณที่ใหญ่กว่า[41] ตัวอย่างความแตกต่างที่พบก็คือ ถ้ามีสิ่งเร้า 2 จุดจรดลงที่ผิวหนังพร้อม ๆ กัน การรู้ว่าเป็นสิ่งเร้า 2 จุดได้จะขึ้นอยู่กับระยะห่างระหว่างสิ่งเร้าและกับผิวหนังที่เป็นเป้าหมาย (ดู Two-point discrimination) เช่นที่ปลายนิ้ว ระยะห่างที่สามารถรู้สึกว่าเป็นสิ่งเร้า 2 จุด ไม่ใช่จุดเดียว อยู่ที่ประมาณ 2 มม. แต่ที่ปลายแขน สิ่งเร้าจะต้องห่างกันถึง 40 มม (4 ซม.) จึงจะรู้สึกได้[42]
นักวิชาการคู่ที่เริ่มตรวจสอบการตอบสนองของตัวรับแรงกลในมนุษย์ (Vallbo และ Johansson) ได้ใส่อิเล็กโทรดผ่านผิวหนังใส่เส้นประสาท median/ulnar nerve ของมือมนุษย์เพื่อวัดการตอบสนองของใยประสาทเดี่ยว ๆ แล้วพบว่า ใยแบบต่าง ๆ แตกต่างกันทั้งโดยการตอบสนองทางสรีรภาพและโดยลักษณะของลานสัญญาณ[43]
ในเรื่องลานรับสัญญาณ ใยประสาทชนิด I ที่อยู่ตื้นกว่า (Meissner’s corpuscle และ Merkel ending) จะมีลานรับสัญญาณที่เล็กกว่า และมีจุดหลายจุดภายในลานสัญญาณเดียวที่ไวเป็นพิเศษ โดยจุดต่าง ๆ จะกระจายไปตามปลายประสาทที่เป็นสาขาของใยประสาทนั้น ๆ และที่เชื่อมกับตัวแรงกลแต่ละตัว ๆ ส่วนใยประสาทชนิด II (Pacinian corpuscle และ Ruffini ending) ที่อยู่ลึกกว่า จะมีตัวรับแรงกลที่ใหญ่กว่า มีลานรับสัญญาณที่ใหญ่กว่า ซึ่งสามารถรับสิ่งเร้าจากผิวที่ไกล ๆ และมีจุดไวเป็นพิเศษจุดเดียวอยู่เหนือตัวรับแรงกลโดยตรง[44]
ให้สังเกตว่า ลานรับสัญญาณของใยประสาทประเภท I โดยมากจะเล็กกว่าวัตถุที่อยู่ในมือมาก ดังนั้น แต่ละใยจึงรับรู้สัมผัสเพียงส่วนเดียวของวัตถุ และจึงต้องอาศัยสมองเพื่อรู้ลักษณะต่าง ๆ รวม ๆ ของวัตถุ โดยรวบรวมประมวลข้อมูลที่ได้จากใยประสาทแต่ละเส้น ๆ[44]
จำแนกตามอัตราการปรับตัว
[แก้]ปลายประสาทรับแรงกลสามารถจำแนกตามอัตราการปรับตัวเมื่อตอบสนองต่อสิ่งเร้า คือ[45][46]
- ปรับตัวอย่างรวดเร็ว (rapidly adapting) คือ ใยประสาทจะตอบสนองต่อสิ่งเร้าอย่างชั่วคราวในช่วงเริ่มเปลี่ยน เช่นเมื่อเริ่มจับวัตถุหรือปล่อยวัตถุ และหยุดการตอบสนองเมื่อสิ่งเร้าคงยืน การปรับตัวเช่นนี้พิจารณาว่า ช่วยให้รู้ข้อมูลที่กำลังเปลี่ยนไป เช่น ลายผิว แรงสั่น การเคลื่อน/ลื่นของวัสดุ
- ปรับตัวช้า (slowly adapting) คือ ใยประสาทจะตอบสนองอย่างคงยืนต่อสิ่งเร้าเป็นระยะเวลานาน และลดการตอบสนองอย่างช้า ๆ การปรับตัวเช่นนี้พิจารณาว่า ช่วยให้รู้รูปลักษณ์ของวัตถุ เช่นรูปร่าง ขนาด แรงดัน และความอ่อนแข็งได้
ลักษณะการปรับตัวโดยส่วนหนึ่งมาจากแคปซูล (ซึ่งเป็นเนื้อเยื่อนอกเซลล์ประสาท) ที่หุ้มปลายประสาทอยู่ เช่น Pacinian corpuscle เป็นตัวรับแรงกลที่ปรับตัวอย่างรวดเร็ว แต่เมื่อเอาแคปซูลออก ก็จะปรับตัวอย่างช้า ๆ[47]
เมื่อตัวรับแรงกลที่ปรับตัวอย่างรวดเร็วได้สิ่งเร้า มันจะยิงอิมพัลส์ประสาทหรือศักยะงานในอัตราที่สูงขึ้น สิ่งเร้ายิ่งมีเปลี่ยนเร็วเท่าไร อัตราอิมพัลส์ก็จะยิ่งสูงขึ้นเท่านั้น แต่ในไม่ช้าเซลล์ก็จะ "ปรับตัว" เข้ากับสิ่งเร้าที่สม่ำเสมอหรืออยู่นิ่ง ๆ และการยิงสัญญาณก็จะลดกลับไปที่อัตราปกติ ตัวรับความรู้สึกที่ปรับตัวอย่างรวดเร็ว คือ ลดกลับไปยิงสัญญาณในอัตราปกติโดยเร็ว เรียกได้อีกด้วยว่า "phasic" (เป็นพัก ๆ) ส่วนตัวที่ปรับตัวช้า เรียกได้อีกด้วยว่า "tonic" (สม่ำเสมอ)
จำแนกตามสิ่งเร้า
[แก้]ตัวรับแรงกลจะเริ่มทำงานได้ก็ต่อเมื่อได้สิ่งเร้าที่เหมาะสมโดยเฉพาะ ๆ ยกตัวอย่างเช่น ในการสัมผัส Pacinian corpuscle เป็นตัวรับแรงกลเดียวที่สามารถตรวจจับแรงสั่นความถี่สูงได้ เช่นที่ระหว่าง 30-500 เฮิรตซ์ และสำหรับแรงสั่นเป็นคลื่นรูปไซน์ (sinusoidal) ที่ความถี่ 110 เฮิรตซ์ มันจะยิงอิมพัลส์ประสาท 1 ครั้งต่อทุก ๆ คาบ[48]
อย่างไรก็ดี กิจกรรมในชีวิตประจำวันหลาย ๆ อย่างต้องอาศัยตัวรับแรงกลหลายอย่างรวมกันส่งความรู้สึกที่อำนวยให้ทำกิจกรรมได้สำเร็จอย่างมีประสิทธิภาพ เช่นเราจะจับวัสดุที่วางอยู่ ยกขึ้น แล้วย้ายไปวางอีกที่หนึ่งได้ ก็อาจจะต้องอาศัยความรู้สึกจากตัวรับแรงกลหุ้มปลายพิเศษทั้ง 4 อย่าง ซึ่งให้ความรู้สึกรวมทั้งรูปร่างของวัตถุ การถูกมือ/นิ้วเมื่อกำลังจับ ตำแหน่งที่ถูกมือ/นิ้ว ความหยาบเกลี้ยงของผิววัสดุ ความอ่อนแข็งของวัตถุ ความเสียดทานของวัสดุกับมือ แรงที่ใช้เพื่อจับวัสดุ (ทั้งแนวตั้งและแนวขนานกับผิว) ตำแหน่งรูปร่างของมือและนิ้ว ความสั่นสะเทือนเมื่อวัสดุยกพ้นจากที่วาง การลื่นหลุดของวัสดุเมื่อกำลังดำเนินการ ความสั่นสะเทือนเมื่อวัสดุวางถึงที่วางใหม่ เป็นต้น ความเสียหายหรือการหยุดทำงานของตัวรับแรงกลเหล่านี้ อาจทำให้กิจกรรมเช่นนี้ทำได้อย่างไม่มีประสิทธิภาพ[49][50]
ใยประสาทรับแรงกลที่ผิวหนัง
[แก้]SA1 | RA1 | SA2 | RA2 | |
---|---|---|---|---|
ปลาย | Merkell | Meissner | Ruffini | Pacinian |
อยู่ที่ | ยอดของ epidermal sweat ridge | Dermal papillae ใกล้ผิวหนัง | หนังแท้และลึกกว่านั้น | หนังแท้ |
เส้นผ่านศูนย์กลางแอกซอน (μm) | 7-11 | 6-12 | 6-12 | 6-12 |
ความเร็วสัญญาณ (m/s) | 40-65 | 35-70 | 35-70 | 35-70 |
ขนาดลานรับสัญญาณ* (มม2) | 9 | 22 | 60 | ทั้งนิ้วหรือทั้งมือ |
ความหนาแน่นของใยประสาท (ใย/ซม2) | 100 | 150 | 10 | 20 |
การตอบสนองต่อสิ่งเร้าต่าง ๆ | ||||
สิ่งเร้าดีสุด | ขอบ ปลายแหลม มุม ส่วนโค้ง | ผิวหนังเคลื่อนในแนวขนาน | ผิวหนังยืด | แรงสั่น |
spatial acuity (มม) | 0.5 | 3 | 7+ | 10+ |
แรงกดที่คงยืน | คงยืนโดยปรับตัวอย่างช้า ๆ | ไม่มี (ปรับตัวอย่างรวดเร็ว) | คงยืนโดยปรับตัวอย่างช้า ๆ | ไม่มี (ปรับตัวอย่างรวดเร็ว) |
ขีดเริ่มเปลี่ยนเนื่องจากแรงกดเร็ว ๆ หรือแรงสั่น (μm) | ||||
ดีสุด | 8 | 2 | 40 | 0.01 |
เฉลี่ย | 30 | 6 | 300 | 0.08 |
ความถี่ของแรงสั่นที่ตอบสนอง (เฮิรตซ์) | ||||
พิสัย | 0-100 | 1-300 | ? | 5-1,000 |
ดีสุด | 5 | 50 (2-50) | 0.5 | 200 (30-500) |
- * ขนาดลานรับสัญญาณวัดด้วยการกดอย่างรวดเร็วโดยใช้ปลายขนาด 0.5 มิลลิเมตร
มีใยประสาท 4 ประเภทหลัก ๆ ซึ่งรับรู้สัมผัสที่ผิวหนังที่มือและเท้าซึ่งไม่มีขน เรียกชื่อตามอัตราการปรับตัวกับความลึกตื้นที่ผิวหนัง (SA1, SA2, RA1, RA2) ทั้งหมดหุ้มด้วยปลอกไมอีลินหนาแบบ Aβ
- ปรับตัวอย่างช้า ๆ (Slowly Adapting) รวมทั้ง Merkel nerve ending และ Ruffini ending
- ใย Slowly Adapting type 1 (SA1) มี Merkel cell เป็นปลาย เป็นมูลฐานความรู้สึกถึงรูปร่างและความหยาบละเอียดของวัตถุที่สัมผัส[52] มีลานรับสัญญาณที่เล็ก (9 มม2 ที่ปลายนิ้ว[47]) ตอบสนองแบบต่อเนื่อง (sustained) ต่อสิ่งเร้าที่ไม่เปลี่ยนแปลง อยู่ติดใต้หนังกำพร้า (0.5-1.0 มม. ใต้ผิวหนัง) ที่มือจะอยู่ล้อมท่อต่อมเหงื่อใต้สันลายมือ/นิ้ว แต่ละใยประสาทจะแยกเป็นสาขา ๆ ส่งไปเชื่อมกับ Merkel cell หลายตัว[34] เป็นใยประสาทที่มีอย่างหนาแน่นเป็นที่สอง ที่ปลายนิ้วของมนุษย์และลิงอาจมีใยประสาท 100 ใย/ซม2[47] และในบรรดาใยประสาทรับรู้สัมผัสที่ส่งไปจากมือมนุษย์ มีจำนวนรวมกันประมาณ 25%[53]
- ใย Slowly Adapting type 2 (SA2) ซึ่งมีปลายเป็น Ruffini ending ตอบสนองต่อการหดยืดของผิวหนัง ช่วยให้รับรู้รูปร่างของวัตถุที่จับในมือ และทำให้สามารถรู้รูปร่างของมือและตำแหน่งของนิ้วโดยอาจมีส่วนในการรับรู้อากัปกิริยา[2] ตอบสนองอย่างต่อเนื่องกับสิ่งเร้าที่ไม่เปลี่ยนแปลงเหมือนกัน แม้ลานรับสัญญาณจะใหญ่ (60 มม2 ที่มือ[47]) อยู่ในหนังแท้ (2-3 มม. ใต้ผิวหนัง) และเนื้อเยื่อที่ลึกกว่านั้น แต่ละใยอาจส่งสาขาไปยังปลายหลายอัน[39] เนื่องจากปลายมีขนาดใหญ่และอยู่ลึก จึงมีใยประสาทน้อยกว่า สามารถรับรู้สิ่งเร้าได้ไกลกว่า[36] ที่ปลายนิ้วของมนุษย์และลิงอาจมีใยประสาท 10 ใย/ซม2[47] และในบรรดาใยประสาทรับรู้สัมผัสที่ส่งไปจากมือมนุษย์ มีจำนวนรวมกันประมาณ 20%[37]
- ปรับตัวอย่างรวดเร็ว (Rapidly adapting) รวม Meissner corpuscle และ Pacinian corpuscle
- ใย Rapidly Adapting type 1 (RA1) ซึ่งมีปลายเป็น Meissner's corpuscle เป็นมูลฐานความรู้สึกการสั่นความถี่ต่ำ (flutter)[54] และการลื่นไถลบนผิวหนัง[55] มีลานรับสัญญาณที่เล็ก (22 มม2 ที่ปลายนิ้ว[47]) ตอบสนองแบบชั่วคราว (transient) เมื่อเริ่มมีสิ่งเร้าและเมื่อสิ่งเร้าหายไป อยู่ติดใต้หนังกำพร้า (0.5-1.0 ใต้ผิวหนัง) ที่มือจะอยู่ที่ด้านทั้งสองของขอบสันลายมือ/นิ้ว[34] เป็นใยประสาทที่มีอย่างหนาแน่นที่สุด ที่ปลายนิ้วของมนุษย์และลิงอาจมีใยประสาท 150 ใย/ซม2[47] แต่ละใยปกติจะมีปลาย 10-20 ปลาย[32] และในบรรดาใยประสาทรับรู้สัมผัสที่ส่งไปจากมือมนุษย์ มีจำนวนรวมกันประมาณ 40%[53]
- ใย Rapidly Adapting type 2 (RA2) ซึ่งมีปลายเป็น Pacinian corpuscles เป็นมูลฐานของการรู้ความถี่สูง[54] ตอบสนองอย่างชั่วคราวกับสิ่งเร้าเหมือนกัน แต่ลานรับสัญญาณใหญ่ (ที่มือจะมีขนาดเท่ากับทั้งนิ้วหรือทั้งมือ[47]) อยู่ในหนังแท้ (2-3 มม. ใต้ผิวหนัง) และเนื้อเยื่อที่ลึกกว่านั้น แต่ละใยมีปลายเพียงอันเดียว[34] เนื่องจากปลายมีขนาดใหญ่และอยู่ลึก จึงมีใยประสาทน้อยกว่าและสามารถรับรู้สิ่งเร้าได้ไกลกว่า[36] ที่ปลายนิ้วของมนุษย์และลิงอาจมีใยประสาท 20 ใย/ซม2[47] และในบรรดาใยประสาทรับรู้สัมผัสที่ส่งไปจากมือมนุษย์ มีจำนวนรวมกันประมาณ 10-15%[56]
ผิวที่มีผม/ขนก็มีตัวรับแรงกล 3 อย่างด้านบนเหมือนกันยกเว้น Meissner's corpuscle บวกเพิ่มกับตัวรับแรงกลอื่น ๆ ที่เป็นปลายประสาทอิสระไม่มีแคปซูลหุ้ม รวมทั้ง[3][57][58]
- ปลายรับแรงกลที่ปุ่มรากผมหลายชนิด (ใยประสาท G1, G2, T) ซึ่งไวมากต่อการเคลื่อนไหวของขนแม้เส้นเดียว แต่ไม่ไวแรงกดที่คงยืน ไวต่อการลูบและการสั่นความถี่ต่ำ (flutter) โดยทำงานในรูปแบบเดียวกับ Meissner's corpuscle ใยประสาทเส้นหนึ่งจะส่งแอกซอนไปที่ขน 10-30 เส้น มีลานรับสัญญาณใหญ่ (1-2 ซม2) ปรับตัวอย่างรวดเร็ว มีปลอกไมอีลินหนา (Aβ)
- Field unit/receptor ซึ่งอยู่ที่ผิวในระหว่างขน (ใยประสาท F) ไวต่อการเคลื่อนไหว/การยืดของผิว มีลานรับสัญญาณใหญ่ที่มีจุดไวความรู้สึกหลายจุด ปรับตัวอย่างรวดเร็ว มีปลอกไมอีลินหนา (Aβ) รูปร่างสัณฐานของปลายยังไม่ชัดเจน
- Hair-down receptor (ใยประสาท D) ไวต่อการลูบเบา ๆ มีปลอกไมอีลินบาง (Aδ)
- ปลายประสาทอิสระที่ไร้ปลอกไมอีลิน (ใยประสาทกลุ่ม C) ตอบสนองต่อการลูบช้า ๆ ที่ผิวหนัง มีขีดเริ่มเปลี่ยนต่ำ ในมนุษย์ดูเหมือนจะอำนวยให้เกิดกามารมณ์ (erotic, emotional aspects) และบางครั้งเรียกว่า caress detector
ตัวรับแรงกลในกล้ามเนื้อ เอ็น และข้อต่อ
[แก้]ในการรับรู้อากัปกิริยา ตัวรับแรงกลช่วยให้รู้ถึงแรงหดเกร็งของกล้ามเนื้อและตำแหน่งของข้อต่อ มีประเภทรวมทั้ง muscle spindle 2 ชนิด, Golgi tendon organ, และ Joint capsule[3]
Muscle spindle และ stretch reflex
[แก้]ถ้าเคาะเข่าด้วยค้อนหุ้มยาง ขาส่วนล่างจะเตะออกโดยเป็นรีเฟล็กซ์ที่เรียกว่า stretch reflex (รีเฟล็กซ์ยืด) เพราะค้อนตีถูกเส้นเอ็นที่ยึดกล้ามเนื้อเหยียดหน้าขาท่อนบนกับขาท่อนล่าง การเคาะเส้นเอ็นจึงยืดกล้ามเนื้อขาท่อนบน ซึ่งทำให้ตัวรับการยืด (stretch receptor) ในกล้ามเนื้อที่มีชื่อว่า muscle spindle เกิดทำงาน muscle spindle แต่ละตัวจะมีปลายประสาทรับความรู้สึกที่พันรอบใยกล้ามเนื้อพิเศษที่เรียกว่า Intrafusal muscle fiber (หรือ spindle fiber) การยืดใยกล้ามเนื้อนี้ จะเริ่มการระดมยิงอิมพัลส์ประสาทของเซลล์ประสาทรับความรู้สึก (ซึ่งมีใยประสาทชนิด I-a) ที่เป็นเจ้าของปลายประสาท อิมพัลส์ที่ว่านี้จะวิ่งไปตามแอกซอนเข้าไขสันหลัง แล้วไปที่ไซแนปส์หลายประเภท
- สาขาบางส่วนของแอกซอน I-a จะเชื่อมกับ alpha motor neuron โดยตรง ซึ่งจะส่งอิมพัลส์กลับไปที่กล้ามเนื้อเดียวกันทำให้มันเกร็งยืดขาให้ตรง
- สาขาบางส่วนของแอกซอน I-a จะเชื่อมกับ inhibitory interneuron ในไขสันหลัง ซึ่งก็เชื่อมกับกับเซลล์ประสาทสั่งการ (motor neuron) ที่ส่งสัญญาณไปยังกล้ามเนื้อตรงข้ามที่เป็นคู่กัน คือ กล้ามเนื้อคู้ที่ด้านหลังของขาท่อนบน และห้ามไม่ให้กล้ามเนื้อคู้เกร็ง ดังนั้น interneuron เหล่านี้จึงช่วยการเกร็งของกล้ามเนื้อเหยียด
- ยังมีสาขาอื่น ๆ ของแอกซอน I-a ที่เชื่อมกับ interneuron ที่ส่งสัญญาณไปยังศูนย์ในสมอง เช่น สมองน้อย ที่ช่วยประสานการเคลื่อนไหวของร่างกาย[59]
ในเอ็น
[แก้]เอ็นมีตัวรับแรงกล 4 ประเภท ซึ่งล้วนแต่มีปลอกไมอีลิน จึงสามารถส่งสัญญาณเกี่ยวกับตำแหน่งข้อต่อไปยังระบบประสาทกลางได้อย่างรวดเร็ว[60]
- ชนิด I - มีลานรับสัญญาณเล็ก มีขีดเริ่มเปลี่ยนต่ำ ปรับตัวช้า ๆ ต่อสิ่งเร้าทั้งที่อยู่นิ่ง ๆ และกำลังเปลี่ยน
- ชนิด II - มีลานสัญญาณปานกลาง มีขีดเริ่มเปลี่ยนต่ำ ปรับตัวอย่างรวดเร็วต่อสิ่งเร้าที่กำลังเปลี่ยน
- ชนิด III - มีลานรับสัญญาณใหญ่ มีขีดเริ่มเปลี่ยนสูง ปรับตัวช้า ๆ ต่อสิ่งเร้าที่กำลังเปลี่ยน
- ชนิด IV - ลานรับสัญญาณเล็กมาก เป็นโนซิเซ็ปเตอร์ซึ่งมีขีดเริ่มเปลี่ยนสูง และส่งสัญญาณความบาดเจ็บ
ชนิด II และชนิด III โดยเฉพาะเชื่อว่ามีบทบาทในการรับรู้อากัปกิริยา
ตัวรับแรงกลในระบบอื่น ๆ
[แก้]ส่วนนี้ไม่มีการอ้างอิงจากเอกสารอ้างอิงหรือแหล่งข้อมูล โปรดช่วยพัฒนาส่วนนี้โดยเพิ่มแหล่งข้อมูลน่าเชื่อถือ เนื้อหาที่ไม่มีการอ้างอิงอาจถูกคัดค้านหรือนำออก |
ตัวรับแรงกลในระบบอื่น ๆ รวมทั้งเซลล์ขนในหูชั้นใน ซึ่งเป็นตัวรับความรู้สึกใน Vestibular system (เพื่อทรงตัว) และระบบการได้ยิน ยังมี Juxtacapillary (J) receptor ซึ่งตอบสนองต่อเหตุการณ์ต่าง ๆ เช่น ปอดบวมน้ำ สิ่งหลุดอุดหลอดเลือดของปอด ปอดบวม และการบาดเจ็บจากแรงกดดัน อนึ่ง ตัวตรวจจับความดัน (Baroreceptor) ที่อยู่ในหลอดเลือดของสัตว์มีกระดูกสันหลังทั้งหมด จะสามารถตรวจจับความดันโลหิตแล้วส่งข้อมูลไปยังสมอง เพื่อให้สามารถธำรงความดันโลหิตได้
ดูเพิ่ม
[แก้]เชิงอรรถและอ้างอิง
[แก้]- ↑ "mechanoreceptor", Concise Oxford English Dictionary (8th ed.), United Kingdom: Oxford University Press, 1990,
n. Biol. a sensory receptor that responds to mechanical stimuli such as touch or sound.
- ↑ 2.0 2.1 Gardner & Johnson 2013b, p. 508
- ↑ 3.0 3.1 3.2 Gardner & Johnson 2013a, p. 480, 482
- ↑ 4.0 4.1 Byers 2008, 5.34.2.1 Normal Teeth/Acute Pain, p. 471
- ↑ Johansson, RS; Vallbo, ÅB (1983). Trends in Neurosci. 6: 27–31.
{{cite journal}}
:|title=
ไม่มีหรือว่างเปล่า (help)CS1 maint: uses authors parameter (ลิงก์) - ↑ 6.0 6.1 Gardner & Johnson 2013a, p. 480
- ↑ Gardner & Johnson 2013a, p. 476, 480-481
- ↑ Purves et al 2008a, p. 208
- ↑ Purves et al 2008a, p. 222
- ↑ Lumpkin, EA; Caterina, NJ (February 2007). "Mechanisms of sensory transduction in the skin". Nature. 445 (7130): 858–65. doi:10.1038/nature05662. PMID 17314972.
{{cite journal}}
: CS1 maint: uses authors parameter (ลิงก์) - ↑ Gardner & Johnson 2013a, p. 481-482
- ↑ Saladin, KS (2010a). "13: The Spinal Cord, Spinal Nerves, and Somatic Reflexes". Anatomy and Physiology: The Unity of Form and Function (5th ed.). New York: McGraw-Hill. pp. 486 (502). ISBN 978-0-39-099995-5.
- ↑ Gardner & Johnson 2013a, p. 488-495
- ↑ 14.0 14.1 Purves et al 2008a, p. 219-220
- ↑ 15.0 15.1 Gardner & Johnson 2013a, p. 492, 494
- ↑ 16.0 16.1 16.2 Gardner & Johnson 2013a, p. 494
- ↑ Kandel 2013, p. 488, 491, 1026
- ↑ Purves et al 2008a, p. 218
- ↑ Purves et al 2008a, p. 219
- ↑ Kaas 2008, 6.07.6 The Ventroposterior Superior Nucleus, pp. 131-133
- ↑
Kaas 2008, 6.07.3 Somatosensory Relay Nuclei of the Medulla and Upper Spinal Cord, pp. 120-121 อ้างอิง
- Pompeiano, O; Brodal, A (1957). "Spino-vestibular fibers in the cat. An experimental study". J. Comp. Neurol. 108: 353–378.
{{cite journal}}
: CS1 maint: uses authors parameter (ลิงก์)
- Pompeiano, O; Brodal, A (1957). "Spino-vestibular fibers in the cat. An experimental study". J. Comp. Neurol. 108: 353–378.
- ↑ แหล่งอ้างอิงกำหนดระดับไขสันหลังที่มี Clarke's nucleus ไม่เหมือนกัน เช่น
- T1-L2 (Purves et al 2008a, p. 220-221)
- C8-L3 (Kreutzer et al 2011, Cerebellum, หน้า 523)
- ↑ Willis 2008, pp. 6.06.2.1.3 Proprioception, pp. 91-92
- ↑ Johansson and Flanagan (2009). "Coding and use of tactile signals from the fingertips in object manipulation tasks" (PDF). Nature Reviews Neuroscience. 10: 345–359. doi:10.1038/nrn2621.
{{cite journal}}
: CS1 maint: uses authors parameter (ลิงก์) - ↑ McNulty, PA; Macefield, VG (2001). "Modulation of ongoing EMG by different classes of low-threshold mechanoreceptors in the human hand". J of Physiology. 537 (3): 1021–1032.
{{cite journal}}
: CS1 maint: uses authors parameter (ลิงก์) - ↑ Purves et al 2008a, p. 212-213
- ↑ 27.0 27.1 27.2 Gardner & Johnson 2013a, p. 482
- ↑ Gardner & Johnson 2013b, p. 500-501
- ↑ Purves et al 2008, Glossary, pp. G-8 "Meissner’s corpuscles - Encapsulated cutaneous mechanosensory receptors specialized for the detection of fine touch and pressure."
- ↑ 30.0 30.1 Gardner & Johnson 2013b, p. 482, 500
- ↑ 31.0 31.1 31.2 Gardner & Johnson 2013b, p. 509
- ↑ 32.0 32.1 Gardner & Johnson 2013b, p. 501
- ↑ Gardner & Johnson 2013b, p. 501-502
- ↑ 34.0 34.1 34.2 34.3 Gardner & Johnson 2013b, p. 500
- ↑ Rice & Albrecht 2008, Figure 4, pp. 12
- ↑ 36.0 36.1 36.2 36.3 36.4 36.5 Gardner & Johnson 2013b, p. 502
- ↑ 37.0 37.1 Purves et al 2008a, p. 215
- ↑ Tsuchitani, Chieyeko (PHD). "Chapter 2: Somatosensory Systems". Neuroscience Online. คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ May 31, 2011. สืบค้นเมื่อ 2014-03-31.
{{cite web}}
: CS1 maint: uses authors parameter (ลิงก์) - ↑ 39.0 39.1 Goodwin & Wheat 2008, 6.03.2.2 Classification of Innervating Fibers, p. 40-41
- ↑ Gardner & Johnson 2013a, p. 477
- ↑ 41.0 41.1 41.2 41.3 41.4 Purves et al 2008a, p. 210
- ↑ Purves et al 2008a, p. 211
- ↑ Gardner & Johnson 2013b, p. 502-503
- ↑ 44.0 44.1 Gardner & Johnson 2013b, p. 503-504
- ↑ Purves 2008a, p. 211-212
- ↑ Gardner & Johnson 2013b, p. 504, 508
- ↑ 47.00 47.01 47.02 47.03 47.04 47.05 47.06 47.07 47.08 47.09 Purves 2008a, p. 212
- ↑ Gardner & Johnson 2013b, p. 508-509
- ↑ Gardner & Johnson 2013b, p. 508, 500-511
- ↑ Goodwin & Wheat 2008, 6.03.2.4 Activation of Cutaneous Afferents during Manipulation, p. 42
- ↑ Gardner & Johnson 2013b, p. 500, 509
- ↑ Johnson and Hsiao (1992). Annual Review of Neuroscience. 15: 227–50.
{{cite journal}}
:|title=
ไม่มีหรือว่างเปล่า (help)CS1 maint: uses authors parameter (ลิงก์) - ↑ 53.0 53.1 Purves 2008a, p. 213
- ↑ 54.0 54.1 Talbot; และคณะ (Mar 1968). J Neurophysiol. 31 (2): 301–34.
{{cite journal}}
:|title=
ไม่มีหรือว่างเปล่า (help) - ↑ Johansson and Westling (1987). Exp Brain Res. 66 (1): 141–54.
{{cite journal}}
:|title=
ไม่มีหรือว่างเปล่า (help)CS1 maint: uses authors parameter (ลิงก์) - ↑ Purves et al 2008a, p. 214
- ↑ Goodwin & Wheat 2008, 6.03.3.1 Classification of Innervating Fibers, p. 51
- ↑ Willis 2008, 6.06.2.1.2 Flutter-vibration, pp. 90-91
- ↑ "Mechanoreceptors". Kimball's Biology Pages. December 1, 2014. เก็บจากแหล่งเดิมเมื่อ June 27, 2017.
- ↑ Michelson, JD; Hutchins, C (1995). "Mechanoreceptors in human ankle ligaments". The Journal of bone and joint surgery. British volume. 77 (2): 219–24. PMID 7706334.
แหล่งอ้างอิงอื่น ๆ
[แก้]- Kreutzer, Jeffrey S; DeLuca, John; Caplan, Bruce, บ.ก. (2011). Encyclopedia of Clinical Neuropsychology. Springer. doi:10.1007/978-0-387-79948-3. ISBN 978-0-387-79947-6.
{{cite book}}
: CS1 maint: multiple names: editors list (ลิงก์)
- Neuroscience (2008)
- Purves, Dale; Augustine, George J; Fitzpatrick, David; Hall, William C; Lamantia, Anthony Samuel; McNamara, James O; White, Leonard E, บ.ก. (2008a). "9 - The Somatic Sensory System: Touch and Proprioception". Neuroscience (4th ed.). Sinauer Associates. pp. 207–229. ISBN 978-0-87893-697-7.
{{cite book}}
: CS1 maint: multiple names: editors list (ลิงก์) - Purves, Dale; Augustine, George J; Fitzpatrick, David; Hall, William C; Lamantia, Anthony Samuel; McNamara, James O; White, Leonard E, บ.ก. (2008b). "10 - Pain". Neuroscience (4th ed.). Sinauer Associates. pp. 231–251. ISBN 978-0-87893-697-7.
{{cite book}}
: CS1 maint: multiple names: editors list (ลิงก์) - Purves, Dale; Augustine, George J; Fitzpatrick, David; Hall, William C; Lamantia, Anthony Samuel; McNamara, James O; White, Leonard E, บ.ก. (2008). Neuroscience (4th ed.). Sinauer Associates. ISBN 978-0-87893-697-7.
{{cite book}}
:|title=
ไม่มีหรือว่างเปล่า (help)CS1 maint: multiple names: editors list (ลิงก์)
- Principles of Neural Science (2013)
- Gardner, Esther P; Johnson, Kenneth O (2013a). "22 - The Somatosensory System: Receptors and Central Pathway". ใน Kandel, Eric R; Schwartz, James H; Jessell, Thomas M; Siegelbaum, Steven A; Hudspeth, AJ (บ.ก.). Principles of Neural Science (5th ed.). United State of America: McGraw-Hill. pp. 475–497. ISBN 978-0-07-139011-8.
{{cite book}}
: CS1 maint: multiple names: editors list (ลิงก์) - Gardner, Esther P; Johnson, Kenneth O (2013b). "23 - Pain". ใน Kandel, Eric R; Schwartz, James H; Jessell, Thomas M; Siegelbaum, Steven A; Hudspeth, AJ (บ.ก.). Principles of Neural Science (5th ed.). United State of America: McGraw-Hill. pp. 498–529. ISBN 978-0-07-139011-8.
{{cite book}}
: CS1 maint: multiple names: editors list (ลิงก์) - Kandel, Eric R; Schwartz, James H; Jessell, Thomas M; Siegelbaum, Steven A; Hudspeth, AJ (2013). Principles of Neural Science (5th ed.). United State of America: McGraw-Hill. ISBN 978-0-07-139011-8.
- The Senses: A Comprehensive Reference (2008)
- Byers, MR (2008). Bushnell, Catherine; Basbaum, Allan I (บ.ก.). 5.34 Tooth Pain. The Senses: A Comprehensive Reference. Vol. 5: Pain. Elsevier.
{{cite book}}
: CS1 maint: multiple names: editors list (ลิงก์) - Rice, FL; Albrecht, PJ (2008). Kaas, JH; Gardner, EP (บ.ก.). 6.01 Cutaneous Mechanisms of Tactile Perception: Morphological and Chemical Organization of the Innervation to the Skin. The Senses: A Comprehensive Reference. Vol. 6: Somatosensation. Elsevier.
{{cite book}}
: CS1 maint: multiple names: editors list (ลิงก์) - Goodwin, AW; Wheat, HE (2008). Kaas, JH; Gardner, EP (บ.ก.). 6.03 Physiological Responses of Sensory Afferents in Glabrous and Hairy Skin of Humans and Monkeys. The Senses: A Comprehensive Reference. Vol. 6: Somatosensation. Elsevier.
{{cite book}}
: CS1 maint: multiple names: editors list (ลิงก์) - Willis, WD (Jr.) (2008). Kaas, JH; Gardner, EP (บ.ก.). 6.06 Physiological Characteristics of Second-Order Somatosensory Circuits in Spinal Cord and Brainstem. The Senses: A Comprehensive Reference. Vol. 6: Somatosensation. Elsevier.
{{cite book}}
: CS1 maint: multiple names: editors list (ลิงก์) - Kaas, JH (2008). Kaas, JH; Gardner, EP (บ.ก.). 6.07 The Somatosensory Thalamas and Associated Pathways. The Senses: A Comprehensive Reference. Vol. 6: Somatosensation. Elsevier.
{{cite book}}
: CS1 maint: multiple names: editors list (ลิงก์)