จำนวนเต็ม

จากวิกิพีเดีย สารานุกรมเสรี
สัญลักษณ์ที่มักใช้แทนเซตของจำนวนเต็ม

จำนวนเต็ม คือจำนวนที่สามารถเขียนได้โดยปราศจากองค์ประกอบทางเศษส่วนหรือทศนิยม ตัวอย่างเช่น 21, 4, −2048 เหล่านี้คือจำนวนเต็ม แต่ 9.75, 51/2, √2 เหล่านี้ไม่ใช่จำนวนเต็ม เซตของจำนวนเต็มเป็นเซตย่อยของจำนวนจริง และประกอบด้วยจำนวนธรรมชาติ (1, 2, 3, ...) ศูนย์ (0) และตัวผกผันการบวกของจำนวนธรรมชาติ (−1, −2, −3, ...)

เซตของจำนวนเต็มทั้งหมดมักแสดงด้วย Z ตัวหนา (หรือ \mathbb{Z} ตัวหนาบนกระดานดำ, U+2124) มาจากคำในภาษาเยอรมันว่า Zahlen [ˈtsaːlən] แปลว่าจำนวน[1]

จำนวนเต็ม (พร้อมด้วยการดำเนินการการบวก) ก่อร่างเป็นกรุปเล็กที่สุดอันประกอบด้วยโมนอยด์เชิงการบวกของจำนวนธรรมชาติ จำนวนเต็มก่อให้เกิดเซตอนันต์นับได้เช่นเดียวกับจำนวนธรรมชาติ สิ่งเหล่านี้ในทฤษฎีจำนวนเชิงพีชคณิตทำให้เข้าใจได้โดยสามัญว่า จำนวนเต็มซึ่งฝังตัวอยู่ในฟีลด์ของจำนวนตรรกยะ หมายถึง จำนวนเต็มตรรกยะ เพื่อแยกแยะออกจากจำนวนเต็มเชิงพีชคณิตที่ได้นิยามไว้กว้างกว่า

สมบัติทางพีชคณิต[แก้]

Z เป็นเซตปิดสำหรับการดำเนินการการบวกและการคูณ เช่นเดียวกับจำนวนธรรมชาติ นั่นคือ ผลบวกและผลคูณของจำนวนเต็มสองจำนวนใด ๆ เป็นจำนวนเต็ม แต่ Z ยังเป็นเซตปิด เมื่อรวมจำนวนธรรมชาติลบและ 0 ด้วย แต่ Z ไม่เป็นเซตปิดสำหรับการหาร เนื่องจากผลหารของจำนวนเต็มสองจำนวน (เช่น 1 หารด้วย 2) ไม่จำเป็นต้องเป็นจำนวนเต็ม จำนวนเต็มไม่เปิดเซตปิดภายใต้การยกกำลัง ซึ่งต่างจากจำนวนธรรมชาติ (เพราะเมื่อยกกำลังด้วยเลขชี้กำลังเป็นลบจะได้เศษส่วน)

ตารางด้านล่างแสดงสมบัติพื้นฐานของการบวกและการคูณของจำนวนเต็ม a, b และ c ใด ๆ

สมบัติการบวกและการคูณจำนวนเต็ม
การบวก การคูณ
การปิด: a + b เป็นจำนวนเต็ม a × b เป็นจำนวนเต็ม
การเปลี่ยนหมู่: a + (b + c) = (a + b) + c a × (b × c) = (a × b) × c
การสลับที่: a + b = b + a a × b = b × a
การมีสมาชิกเอกลักษณ์: a + 0 = a a × 1 = a
การมีตัวผกผัน: a + (−a) = 0
การแจกแจง: a × (b + c) = (a × b) + (a × c) และ (a + b) × c = (a × c) + (b × c)
ไม่มีตัวหารของศูนย์: (*) ถ้า a × b = 0 แล้ว a = 0 หรือ b = 0 (หรือทั้งคู่)

ตามศัพท์ของพีชคณิตนามธรรม คุณสมบัติห้าข้อแรกข้างบนสามารถบอกได้ว่าเซต Z กับการบวกเป็น อบิเลียนกรุป

สมบัติการเรียงลำดับ[แก้]

Z เป็น เซตเรียงลำดับที่ไม่มีขอบเขตบนหรือขอบเขตล่าง. การเรียงลำดับของ Z อยู่ในรูป

... < −2 < −1 < 0 < 1 < 2 < ...

จำนวนเต็มหนึ่งๆ จะเป็นจำนวนบวก ถ้ามันมากกว่าศูนย์ และเป็นจำนวนลบ ถ้ามันน้อยกว่าศูนย์ สำหรับศูนย์ ไม่ได้จัดอยู่ในจำนวนบวกหรือจำนวนลบแต่อย่างใด

การเรียงลำดับจำนวนเต็มโดยใช้การดำเนินการทางพีชคณิต ดังนี้

  1. ถ้า a < b และ c < d แล้ว a + c < b + d
  2. ถ้า a < b และ 0 < c แล้ว ac < bc
  3. ถ้า a < b และ c < 0 แล้ว ac > bc.

จำนวนเต็มในการคำนวณ[แก้]

จำนวนเต็มมักเป็นชนิดข้อมูลพื้นฐานในภาษาโปรแกรม แต่จำนวนเต็มในภาษาโปรแกรมมีความจุจำกัด และมักมีจำนวนบิตที่ตายตัว ทำให้สามารถเก็บค่าได้แค่บางส่วนจากจำนวนเต็มทั้งหมดทางคณิตศาสตร์ แต่ในอีกด้านหนึ่ง แบบจำลองทางทฤษฎีทางคำนวณ เช่น เครื่องจักรทัวริง สมมุติให้เครื่องคำนวณมีความจุไม่มีที่สิ้นสุด (a+)-b

อ้างอิง[แก้]

  1. Miller, Jeff (2010-08-29). "Earliest Uses of Symbols of Number Theory". สืบค้นเมื่อ 2010-09-20. 

แหล่งข้อมูลอื่น[แก้]