แฟกทอเรียล

จากวิกิพีเดีย สารานุกรมเสรี
(เปลี่ยนทางจาก ดับเบิลแฟกทอเรียล)
n n!
0 1
1 1
2 2
3 6
4 24
5 120
6 720
7 5040
8 40320
9 362880
10 3628800
15 1307674368000
20 2432902008176640000
25 1.5511210043×1025
50 3.0414093202×1064
70 1.1978571670×10100
100 9.3326215444×10157
170 7.2574156153×10306
171 1.2410180702×10309
450 1.7333687331×101,000
1000 4.0238726008×102,567
3249 6.4123376883×1010,000
10000 2.8462596809×1035,659
25206 1.2057034382×10100,000
100000 2.8242294080×10456,573
205023 2.5038989317×101,000,004
1000000 8.2639316883×105,565,708
1.0248383838×1098 101.0000000000×10100
10100 109.9565705518×10101
1.7976931349×10308 105.5336665775×10310
ตัวอย่างแฟกทอเรียลบางจำนวนในลำดับแฟกทอเรียล (ลำดับ OEISA000142) ค่าที่ปรากฏในสัญกรณ์เป็นค่าที่ปัดเศษแล้ว

ในทางคณิตศาสตร์ แฟกทอเรียล (อังกฤษ: factorial) ของจำนวนเต็มไม่เป็นลบ n คือผลคูณของจำนวนเต็มบวกทั้งหมดที่น้อยกว่าหรือเท่ากับ n เขียนแทนด้วย n! (อ่านว่า n แฟกทอเรียล) ตัวอย่างเช่น

5! = 5 \times 4 \times 3 \times 2 \times 1 = 120\;

สำหรับค่าของ 0! ถูกกำหนดให้เท่ากับ 1 ตามหลักการของผลคูณว่าง [1]

การดำเนินการแฟกทอเรียลพบได้ในคณิตศาสตร์สาขาต่าง ๆ โดยเฉพาะอย่างยิ่งคณิตศาสตร์เชิงการจัด พีชคณิต และคณิตวิเคราะห์ การพบเห็นโดยพื้นฐานที่สุดคือข้อเท็จจริงที่ว่า การจัดลำดับวัตถุที่แตกต่างกัน n สิ่งสามารถทำได้ n! วิธี (การเรียงสับเปลี่ยนของเซตของวัตถุ) ข้อเท็จจริงนี้เป็นที่ทราบโดยนักวิชาการชาวอินเดียตั้งแต่ต้นคริสต์ศตวรรษที่ 12 เป็นอย่างน้อย [2] นอกจากนี้ คริสเตียน แครมป์ (Christian Kramp) เป็นผู้แนะนำให้ใช้สัญกรณ์ n! เมื่อ ค.ศ. 1808 (พ.ศ. 2351) [3]

นิยามของแฟกทอเรียลสามารถขยายแนวคิดไปบนอาร์กิวเมนต์ที่ไม่เป็นจำนวนเต็มได้โดยยังคงมีสมบัติที่สำคัญ ซึ่งเกี่ยวข้องกับคณิตศาสตร์ชั้นสูงยิ่งขึ้น โดยเฉพาะอย่างยิ่งเทคนิคต่าง ๆ ที่ใช้ในคณิตวิเคราะห์

นิยาม[แก้]

ฟังก์ชันแฟกทอเรียลได้นิยามเชิงรูปนัยไว้ดังนี้

 n!=\prod_{k=1}^n k \!

หรือนิยามแบบเวียนเกิดได้ดังนี้

 n! = \begin{cases}
1 & \text{if } n = 0 \\
(n-1)!\times n & \text{if } n > 0
\end{cases}

นิยามด้านบนทั้งสองได้รวมกรณีนี้เข้าไปด้วย

0! = 1\;

ตามหลักการว่าผลคูณของจำนวนที่ไม่มีอยู่เลย (ผลคูณว่าง) มีค่าเท่ากับ 1 สิ่งนี้เป็นประโยชน์เนื่องจาก

  • การเรียงสับเปลี่ยนของวัตถุศูนย์สิ่ง มีเพียงหนึ่งวิธีเท่านั้น (ไม่มีสิ่งใดเรียงสับเปลี่ยน "ทุกสิ่ง" ยังคงอยู่ที่เดิม)
  • ความสัมพันธ์เวียนเกิด (n + 1)! = n! × (n + 1) ซึ่งสามารถใช้ได้เฉพาะ n > 0 จะทำให้ใช้กับกรณี n = 0 ได้ด้วย
  • นิพจน์ของสูตรต่าง ๆ ที่มีแฟกทอเรียลสามารถใช้งานได้ อย่างเช่นฟังก์ชันเลขชี้กำลังในรูปแบบอนุกรมกำลัง
     e^x = \sum_{n = 0}^{\infty}\frac{x^n}{n!}
  • เอกลักษณ์ต่าง ๆ ในคณิตศาสตร์เชิงการจัดสามารถใช้งานได้ สำหรับขนาดของวัตถุที่ประยุกต์ใช้ได้ทั้งหมด จำนวนวิธีที่จะเลือกสมาชิก 0 ตัวจากเซตว่างเท่ากับ \tbinom{0}{0} = \tfrac{0!}{0!0!} = 1 หรือโดยนัยทั่วไป จำนวนวิธีที่จะเลือกสมาชิก (ทั้งหมด) n ตัวจากเซตที่มีขนาด n เท่ากับ \tbinom nn = \tfrac{n!}{n!0!} = 1

ฟังก์ชันแฟกทอเรียลสามารถนิยามให้กับค่าที่ไม่เป็นจำนวนเต็มได้โดยใช้คณิตศาสตร์ขั้นสูง ดูรายละเอียดด้านล่าง ซึ่งนิยามโดยนัยทั่วไปมากขึ้นเช่นนี้มีใช้ในเครื่องคิดเลขระดับสูงและซอฟต์แวร์คณิตศาสตร์อาทิเมเพิลหรือแมเทอแมติกา

การประยุกต์[แก้]

แม้ว่าฟังก์ชันแฟกทอเรียลมีที่มาจากคณิตศาสตร์เชิงการจัด แต่สูตรที่เกี่ยวข้องกับแฟกทอเรียลก็ปรากฏในคณิตศาสตร์หลายสาขา

  • การเรียงสับเปลี่ยน (permutation) โดยพื้นฐานคือการเรียงลำดับวัตถุ n สิ่งที่แตกต่างกัน ซึ่งสามารถทำได้ n! วิธี
  • บ่อยครั้งที่แฟกทอเรียลปรากฏเป็นตัวส่วนในสูตรเพื่ออธิบายว่า การเรียงลำดับของวัตถุไม่มีความสำคัญและถูกเพิกเฉย ตัวอย่างตามแบบฉบับเช่น การจัดหมู่ (combination) วัตถุ k สิ่งจากเซตของวัตถุ n สิ่ง เราอาจจัดหมู่โดยการเรียงสับเปลี่ยนวัตถุ k สิ่ง หมายความว่าเลือกวัตถุสิ่งหนึ่งออกจากเซตทีละครั้งเป็นจำนวน k ครั้ง กระทั่งได้จำนวนวิธีรวมเท่ากับ
n^{\underline k}=n(n-1)(n-2)\cdots(n-k+1)
อย่างไรก็ตาม การเรียงลำดับของวัตถุที่ถูกเลือกในการจัดหมู่ไม่มีความสำคัญ และเนื่องจากการเรียงลำดับวัตถุ k สิ่งสามารถกระทำได้แตกต่างกัน k! วิธี เพราะฉะนั้นจำนวนวิธีของการจัดหมู่วัตถุ k สิ่งจากเซตของวัตถุ n สิ่งที่ถูกต้องจึงควรเท่ากับ
\frac{n^{\underline k}}{k!}=\frac{n(n-1)(n-2)\cdots(n-k+1)}{k(k-1)(k-2)\cdots1}
ผลลัพธ์ดังกล่าวเป็นที่รู้จักในชื่อสัมประสิทธิ์ทวินาม \tbinom n k เพราะว่ามันเป็นสัมประสิทธิ์ของพจน์ Xk ในการกระจาย (1 + X)n
  • แฟกทอเรียลปรากฏในพีชคณิตด้วยเหตุผลหลายประการ ตัวอย่างเช่นสัมประสิทธิ์ของสูตรทวินามดังที่กล่าวแล้ว หรือการเฉลี่ยบนการเรียงสับเปลี่ยนเพื่อการทำให้สมมาตร (symmetrization) ของการดำเนินการเฉพาะอย่าง
  • แฟกทอเรียลก็มีใช้ในแคลคูลัส ตัวอย่างเช่นตัวส่วนของพจน์ในอนุกรมเทย์เลอร์ (Taylor series) เพื่อชดเชยข้อเท็จจริงโดยพื้นฐานว่าอนุพันธ์ชั้นที่ n ของ xn คือ n!
  • แฟกทอเรียลก็มีใช้อย่างกว้างขวางในทฤษฎีความน่าจะเป็น
  • แฟกทอเรียลมีประโยชน์ทำให้การจัดดำเนินการนิพจน์สะดวกขึ้น ตัวอย่างเช่นจำนวนวิธีของการเรียงสับเปลี่ยนของวัตถุ k สิ่งจากวัตถุ n สิ่ง สามารถเขียนได้เป็น
n^{\underline k}=\frac{n!}{(n-k)!}
มันอาจถูกใช้เพื่อพิสูจน์สมบัติสมมาตรของสัมประสิทธิ์ทวินาม ในกรณีที่ไม่มีประสิทธิภาพเพียงพอที่จะคำนวณจำนวนเช่นนั้นได้
\binom nk=\frac{n^{\underline k}}{k!}=\frac{n!}{(n-k)!k!}=\frac{n^{\underline{n-k}}}{(n-k)!}=\binom n{n-k}

ทฤษฎีจำนวน[แก้]

แฟกทอเรียลมีการใช้งานหลายอย่างในทฤษฎีจำนวน โดยเฉพาะอย่างยิ่ง n! สามารถหารด้วยจำนวนเฉพาะทั้งหมดที่น้อยกว่าหรือเท่ากับ n ได้ลงตัว ผลสรุปที่ตามมาคือ n > 5 จะเป็นจำนวนประกอบก็ต่อเมื่อ

(n-1)!\ \equiv\ 0 \pmod n

ทฤษฎีของวิลสัน (Wilson's theorem) ได้กล่าวถึงผลสรุปที่เคร่งครัดมากกว่าดังนี้

(p-1)!\ \equiv\ -1 \pmod p

ก็ต่อเมื่อ p เป็นจำนวนเฉพาะ

อาเดรียง-มารี เลอฌ็องดร์ (Adrien-Marie Legendre) พบว่าการคูณของจำนวนเฉพาะ p ที่ปรากฏในการแยกตัวประกอบเฉพาะของ n! สามารถแสดงได้อย่างแม่นยำเป็น

\sum_{i=1}^{\infty} \left \lfloor \frac{n}{p^i} \right \rfloor

ข้อเท็จจริงนี้มีพื้นฐานบนการนับจำนวนตัวประกอบ p ของจำนวนเต็มตั้งแต่ 1 ถึง n; จำนวนพหุคูณของ p ในจำนวนเต็มตั้งแต่ 1 ถึง n สามารถพิจารณาได้จากสูตร \textstyle \left \lfloor \frac{n}{p} \right \rfloor อย่างไรก็ตามสูตรนี้จะนับตัวประกอบ p เพียงครั้งเดียว ยังคงมีตัวประกอบจำนวน \textstyle \left \lfloor \frac{n}{p^2} \right \rfloor ตัวของ p ที่จะต้องนับอีก และยังมีที่คล้ายกันอีกในกำลังสาม สี่ ห้า จนถึงอนันต์ ผลรวมดังกล่าวเป็นจำนวนจำกัดเนื่องจาก pi สามารถมีค่าได้แค่น้อยกว่าหรือเท่ากับ n สำหรับ i หลายค่าอย่างจำกัด และฟังก์ชันพื้นจะให้ผลลัพธ์เป็น 0 เมื่อใช้กับ pi > n

แฟกทอเรียลที่เป็นจำนวนเฉพาะด้วยมีจำนวนเดียวคือ 2 แต่ก็มีจำนวนเฉพาะจำนวนมากที่อยู่ในรูปแบบ n! ± 1 เรียกว่าจำนวนเฉพาะเชิงแฟกทอเรียล (factorial prime)

แฟกทอเรียลที่มากกว่า 0! และ 1! เป็นจำนวนคู่ทั้งหมด เพราะว่าเป็นพหุคูณของ 2 นอกจากนี้แฟกทอเรียลที่มากกว่า 5! ก็เป็นพหุคูณของ 10 (และทำให้มีศูนย์ลงท้ายในหลักสุดท้ายเป็นต้นไป) เนื่องจากเป็นพหุคูณของ 5 กับ 2

อนุกรมที่มีแต่ละพจน์เป็นส่วนกลับของแฟกทอเรียล ทำให้เกิดอนุกรมลู่เข้าและมีค่าเท่ากับ e

\sum_{n=0}^{\infty} \frac{1}{n!} = \frac{1}{1} + \frac{1}{1} + \frac{1}{2} + \frac{1}{6} + \frac{1}{24}  + \frac{1}{120} + \ldots = e

อัตราการเติบโตและการประมาณเมื่อ n มีขนาดใหญ่[แก้]

การลงจุดของลอการิทึมธรรมชาติของแฟกทอเรียล

เมื่อ n มีค่าเพิ่มขึ้น ค่า n! จะมีอัตราการเติบโตมากกว่าพหุนามและฟังก์ชันเลขชี้กำลังทั้งหมดที่มี n ประกอบอยู่ (แต่ก็ยังน้อยกว่าฟังก์ชันเลขชี้กำลังสองชั้น)

การประมาณค่าที่ใกล้เคียงที่สุดของ n! ใช้พื้นฐานบนลอการิทึมธรรมชาติดังนี้

\log n! = \sum_{x=1}^n \log x

กราฟของฟังก์ชัน f(n) = log n! แสดงไว้ในภาพด้านขวา ลักษณะของกราฟดูเหมือนเป็นเส้นตรง (ฟังก์ชันเชิงเส้น) สำหรับทุกค่าของ n ที่เป็นไปได้ แต่ความจริงมันไม่ใช่เส้นตรง เราอาจประมาณค่า log n! อย่างง่ายโดยกำหนดขอบเขตบนและล่างด้วยปริพันธ์

\int_1^n \log x \, dx \leq \sum_{x=1}^n \log x \leq \int_0^n \log (x+1) \, dx

ซึ่งจะได้การประมาณค่าดังนี้

n\log\left(\frac{n}{e}\right)+1 \leq \log n! \leq (n+1)\log\left( \frac{n+1}{e} \right) + 1

เนื่องจากการคำนวณ log n! มีประสิทธิภาพเป็น Θ(n log n) สิ่งนี้จึงมีบทบาทหลักในการวิเคราะห์ความซับซ้อนในการคำนวณของขั้นตอนวิธีการเรียงลำดับ (ดูเพิ่มที่การเรียงลำดับแบบเปรียบเทียบ)

จากขอบเขตของ log n! ที่ได้ สามารถลดรูปจนเหลือเพียง

e\left(\frac ne\right)^n \leq n! \leq e\left(\frac{n+1}e\right)^{n+1}

การใช้สูตรดังกล่าวในทางปฏิบัติบางครั้งสามารถประมาณได้ง่ายกว่าแต่ไม่เคร่งครัด สูตรดังกล่าวสามารถแสดงให้เห็นได้ว่า สำหรับทุกค่าของ n จะได้ (n/3)^n < n! และสำหรับ n ≥ 6 จะได้ n! < (n/2)^n เป็นต้น

เมื่อ n เป็นจำนวนขนาดใหญ่ เรามีวิธีการประมาณค่า n! ที่ดีกว่าโดยใช้การประมาณของสเตอร์ลิง (Stirling's approximation)

n!\approx \sqrt{2\pi n}\left(\frac{n}{e}\right)^n

ในความเป็นจริง สำหรับทุกค่าของ n สูตรดังกล่าวสามารถพิสูจน์ได้ว่า

n! > \sqrt{2\pi n}\left(\frac{n}{e}\right)^n

การประมาณค่า log n! ที่ดีกว่าอีกสูตรหนึ่ง กำหนดไว้โดย ศรีนิวาสะ รามานุจัน ดังนี้ [4]

\log n! \approx n\log n - n + \frac {\log(n(1+4n(1+2n)))} {6} + \frac {\log(\pi)} {2}

การขยายแฟกทอเรียลไปยังอาร์กิวเมนต์ที่ไม่เป็นจำนวนเต็ม[แก้]

ฟังก์ชันแกมมาและฟังก์ชันพาย[แก้]

ฟังก์ชันแฟกทอเรียลที่วางนัยทั่วไปบนจำนวนจริงทุกจำนวนยกเว้นจำนวนเต็มลบ ตัวอย่าง 0! = 1! = 1, (−0.5)! = √π, (0.5)! = √π/2

นอกเหนือจากจำนวนเต็มที่ไม่เป็นลบแล้ว ฟังก์ชันแฟกทอเรียลสามารถนิยามให้กับค่าอื่นที่ไม่เป็นจำนวนเต็มได้ แต่การทำเช่นนี้จำเป็นต้องใช้เครื่องเครื่องมือขั้นสูงจากคณิตวิเคราะห์ ฟังก์ชันอันหนึ่งที่ "เติมเต็ม" ค่าต่าง ๆ ของแฟกทอเรียล (แต่มีค่าเลื่อนไป 1 ในอาร์กิวเมนต์) เรียกว่าฟังก์ชันแกมมา (Gamma function) เขียนแทนด้วย Γ(z) ซึ่งนิยามบนจำนวนเชิงซ้อน z ทุกจำนวนยกเว้นจำนวนเต็มลบ และส่วนจริงของ z เป็นจำนวนบวก ดังนี้

\Gamma(z)=\int_0^\infty t^{z-1} e^{-t}\, \mathrm{d}t

ความสัมพันธ์ระหว่างฟังก์ชันแกมมากับแฟกทอเรียลเมื่อ n เป็นจำนวนธรรมชาติ เป็นดังนี้

n!=\Gamma(n+1)\,

สูตรดั้งเดิมของออยเลอร์สำหรับนิยามฟังก์ชันแกมมาคือ

\Gamma(z)=\lim_{n\to\infty}\frac{n^zn!}{\displaystyle\prod_{k=0}^n (z+k)}

ยังมีสัญกรณ์อีกอย่างหนึ่งซึ่งเกาส์เป็นผู้คิดค้นและบางครั้งก็ถูกใช้เช่นกัน นั่นคือ ฟังก์ชันพาย (Pi function) เขียนแทนด้วย Π(z) นิยามไว้สำหรับจำนวนจริง z ที่ไม่น้อยกว่า 0 ดังนี้

\Pi(z)=\int_0^\infty t^{z} e^{-t}\, \mathrm{d}t

หากเทียบกับฟังก์ชันแกมมาจะได้ว่า

\Pi(z) = \Gamma(z+1)\,

ฟังก์ชันพายเป็นการขยายแนวคิดแฟกทอเรียลอย่างแท้จริงดังนี้

\Pi(n) = n!\text{ for }n \in \mathbf{N}\,

ยิ่งไปกว่านี้ ฟังก์ชันพายมีการเวียนเกิดเหมือนกับแฟกทอเรียล แต่ใช้กับจำนวนเชิงซ้อน z ทุกจำนวนที่นิยาม

\Pi(z) = z\Pi(z-1)\,

โดยข้อเท็จจริงความสัมพันธ์เวียนเกิดไม่มีอีกต่อไปแล้ว เว้นแต่ในสมการเชิงฟังก์ชัน เมื่อแสดงในพจน์ของฟังก์ชันแกมมา สมการดังกล่าวจะเปลี่ยนเป็น

\Gamma(n+1)=n\Gamma(n)\,

เนื่องจากแฟกทอเรียลถูกขยายโดยฟังก์ชันพาย สำหรับจำนวนเชิงซ้อน z ทุกจำนวนที่นิยาม เราจึงสามารถเขียนว่า

z! = \Pi(z)\,

ค่าของฟังก์ชันเหล่านี้ที่จำนวนเต็มครึ่ง (half-integer) สามารถพิจารณาได้จากสูตรต่อไปนี้ โดยพื้นฐานเราทราบว่า

\Gamma\left (\frac{1}{2}\right )=\left (-\frac{1}{2}\right )!=\Pi\left (-\frac{1}{2}\right ) = \sqrt{\pi}

เมื่อ n เป็นจำนวนธรรมชาติ จะได้สูตร

\Gamma\left (\frac{1}{2}+n\right ) = \left (-\frac{1}{2}+n\right )! = \Pi\left (-\frac{1}{2}+n\right ) = \sqrt{\pi} \prod_{k=1}^n {2k - 1 \over 2} = {(2n)! \over 4^n n!} \sqrt{\pi} = {(2n-1)! \over 2^{2n-1}(n-1)!} \sqrt{\pi}

ตัวอย่าง

\Gamma\left (4.5 \right ) = 3.5! = \Pi\left (3.5\right ) = {1\over 2}\cdot{3\over 2}\cdot{5\over 2}\cdot{7\over 2} \sqrt{\pi} = {8! \over 4^4 4!} \sqrt{\pi} = {7! \over 2^7 3!} \sqrt{\pi} = {105 \over 16} \sqrt{\pi} \approx 11.63

และอีกสูตรหนึ่ง

\Gamma\left (\frac{1}{2}-n\right ) = \left (-\frac{1}{2}-n\right )! = \Pi\left (-\frac{1}{2}-n\right ) = \sqrt{\pi} \prod_{k=1}^n {2 \over 1 - 2k} = {(-4)^n n! \over (2n)!} \sqrt{\pi}

ตัวอย่าง

\Gamma\left (-2.5 \right ) = (-3.5)! = \Pi\left (-3.5\right ) = {2\over -1}\cdot{2\over -3}\cdot{2\over -5} \sqrt{\pi} = {(-4)^3 3! \over 6!} \sqrt{\pi} = -{8 \over 15} \sqrt{\pi} \approx -0.9453

ฟังก์ชันพายไม่ได้เป็นเพียงฟังก์ชันเดียวที่ขยายแฟกทอเรียล ไปเป็นฟังก์ชันสำหรับจำนวนเชิงซ้อนเกือบทุกจำนวน และไม่ได้เป็นเพียงฟังก์ชันเดียวที่เป็นฟังก์ชันวิเคราะห์ (analytic function) เมื่อใดก็ตามที่มันถูกนิยาม แต่ไม่ว่าด้วยเหตุผลอันใด ฟังก์ชันพายมักเป็นตัวแทนโดยปริยายเมื่อต้องการหาค่าแฟกทอเรียลของจำนวนเชิงซ้อน ตัวอย่างเช่น ทฤษฎีบทบอร์-โมลเลอรัประบุว่า ฟังก์ชันแกมมาเป็นฟังก์ชันเดียวที่รับค่า 1 แล้วให้ผลลัพธ์เป็น 1, สอดคล้องกับสมการเชิงฟังก์ชัน Γ(n + 1) = nΓ(n), เป็นฟังก์ชันมีโรมอร์ฟิก (meromorphic function) บนจำนวนเชิงซ้อน, และเป็นฟังก์ชันคอนเวกซ์เชิงลอการิทึม (logarithmically convex function) บนแกนจำนวนจริงบวก เงื่อนไขที่คล้ายกันนี้ก็ปรากฏในฟังก์ชันพาย โดยเปลี่ยนสมการเชิงฟังก์ชันเป็น Π(n) = nΠ(n − 1)

อย่างไรก็ตาม ก็ยังมีฟังก์ชันเชิงซ้อนอื่นที่เรียบง่ายกว่าฟังก์ชันวิเคราะห์และสอดแทรกแฟกทอเรียลเข้าไป ตัวอย่างเช่น "ฟังก์ชันแกมมา" ของฌัก อาดามาร์ (Jacques Hadamard) ต่างจากฟังก์ชันแกมมาปรกติตรงที่มันเป็นฟังก์ชันทั่ว (entire function) [5][6]

ออยเลอร์ยังได้สร้างสูตรสำหรับการประมาณค่าด้วยผลคูณลู่เข้าสำหรับแฟกทอเรียลที่ไม่ใช่จำนวนเต็ม ซึ่งเทียบเท่ากับสูตรของฟังก์ชันแกมมาที่ได้กล่าวไว้แล้ว

\begin{align}
n! = \Pi(n) &= \prod_{k = 1}^\infty \left(\frac{k+1}{k}\right)^n\!\!\frac{k}{n+k} \\
&= \left[ \left(\frac{2}{1}\right)^n\frac{1}{n+1}\right]\left[ \left(\frac{3}{2}\right)^n\frac{2}{n+2}\right]\left[ \left(\frac{4}{3}\right)^n\frac{3}{n+3}\right]\cdots
\end{align}

อย่างไรก็ดี สูตรนี้ไม่ได้ให้วิธีการคำนวณเชิงปฏิบัติของฟังก์ชันพายหรือฟังก์ชันแกมมา เนื่องด้วยอัตราการลู่เข้าของมันนั้นช้า

การประยุกต์ใช้ฟังก์ชันแกมมา[แก้]

ปริมาตรของทรงกลม n มิติที่มีรัศมี R หน่วย คำนวณได้จากสูตร

V_n=\frac{\pi^{n/2}}{\Gamma((n/2)+1)}R^n

ฟังก์ชันที่มีลักษณะคล้ายกับแฟกทอเรียล[แก้]

มัลติแฟกทอเรียล[แก้]

มัลติแฟกทอเรียล เป็นฟังก์ชันที่เขียนอยู่ในรูปแบบ n!, n!! หรือมีเครื่องหมายแฟกทอเรียลมากกว่านั้น

n!! หมายถึง ดับเบิลแฟกทอเรียล ของ n ซึ่งนิยามโดย


  n!!=
  \left\{
   \begin{matrix}
    1,\qquad\quad\ &&\mbox{if }n=0\mbox{ or }n=1;
   \\
    n (n-2) !!&&\mbox{if }n\ge2.\qquad\qquad
   \end{matrix}
  \right.

ตัวอย่างเช่น 8!! = 2 · 4 · 6 · 8 = 384 and 9!! = 1 · 3 · 5 · 7 · 9 = 945 ลำดับของดับเบิลแฟกทอเรียล สำหรับ n = 0, 1, 2,... ได้แก่

1, 1, 2, 3, 8, 15, 48, 105, 384, 945, 3840, ...

จากนิยามดังกล่าวทำให้สามารถหาดับเบิลแฟกทอเรียลของจำนวนเต็มลบได้คือ

 (n-2) !!=\frac{n!!}{n}

ลำดับของดับเบิลแฟกทอเรียลสำหรับ n = -1, -3, -5, -7,... คือ

1, -1, 1/3, -1/15, ...

เอกลักษณ์ของดับเบิลแฟกทอเรียลได้แก่

n!=n!! (n-1) !! \,
 (2n) !!=2^nn! \,
 (2n+1) !!={(2n+1) !\over (2n) !!}={(2n+1) !\over2^nn!}
\Gamma\left (n+{1\over2}\right) =\sqrt{\pi}\,\,{(2n-1) !!\over2^n}
\Gamma\left ({n\over2}+1\right) =\sqrt{\pi}\,\,{n!!\over2^{(n+1)/2}}

ฟังก์ชันมัลติแฟกทอเรียลอื่นๆ ที่มีเครื่องหมายแฟกทอเรียล k เครื่องหมาย มีนิยามโดย


  n!^{(k)}=
  \left\{
   \begin{matrix}
    1,\qquad\qquad\ &&\mbox{if }0\le n<k;
   \\
    n (n-k) !^{(k)},&&\mbox{if }n\ge k.\quad\ \ \,
   \end{matrix}
  \right.

ซูเปอร์แฟกทอเรียล[แก้]

ซูเปอร์แฟกทอเรียล มีรูปแบบคือ


  \mathrm{sf} (n)
  =\prod_{k=1}^n k! =\prod_{k=1}^n k^{n-k+1}
  =1^n\cdot2^{n-1}\cdot3^{n-2}\cdots (n-1) ^2\cdot n^1.

เช่น ซูเปอร์แฟกทอเรียลของ 4 คือ

 \mathrm{sf} (4) =1! \times 2! \times 3! \times 4!=288 \,

อ้างอิง[แก้]

  1. Ronald L. Graham, Donald E. Knuth, Oren Patashnik (1988) Concrete Mathematics, Addison-Wesley, Reading MA. ISBN 0-201-14236-8, p. 111
  2. N. L. Biggs, The roots of combinatorics, Historia Math. 6 (1979) 109−136
  3. Higgins, Peter (2008), Number Story: From Counting to Cryptography, New York: Copernicus, p. 12, ISBN 978-1-84800-000-1  says Krempe though.
  4. Ramanujan, Srinivasa (1988), The lost notebook and other unpublished papers, Springer Berlin, p. 339, ISBN 354018726X 
  5. Hadamard, M. J. (1894), Sur L’Expression Du Produit 1·2·3· · · · ·(n−1) Par Une Fonction Entière (ใน French), OEuvres de Jacques Hadamard, Centre National de la Recherche Scientifiques, Paris, 1968 
  6. Peter Luschny, Hadamard versus Euler - Who found the better Gamma function?.