ทฤษฎีความน่าจะเป็น

จากวิกิพีเดีย สารานุกรมเสรี

ทฤษฎีความน่าจะเป็น คือการศึกษาความน่าจะเป็นแบบคณิตศาสตร์

นักคณิตศาสตร์จะมองความน่าจะเป็นว่าเป็นตัวเลขระหว่างศูนย์กับหนึ่ง ที่กำหนดให้กับ "เหตุการณ์" (ความน่าจะเป็นที่เท่ากับ 0 ก็คือไม่มีโอกาสที่เหตุการณ์นั้นจะเกิดขึ้น แต่ถ้าความน่าจะเป็นเท่ากับ 1 แสดงว่าเหตุการณ์เหล่านั้นเกิดขึ้นได้อย่างแน่นอน) ที่เกิดขึ้นแบบสุ่ม ความน่าจะเป็น P(E) ถูกกำหนดให้กับเหตุการณ์ E ตามสัจพจน์ของความน่าจะเป็น

ความน่าจะเป็นที่เหตุการณ์ E จะเกิดขึ้น เมื่อ กำหนด ให้อีกเหตุการณ์ F เกิดขึ้น เรียกว่าความน่าจะเป็นมีเงื่อนไข ของ E เมื่อให้ F โดยค่าความน่าจะเป็นคือ P(E \cap F)/P(F) (เมื่อ P(F) ไม่เป็นศูนย์) ถ้าความน่าจะเป็นมีเงื่อนไขของ E เมื่อให้ F มีค่าเช่นเดียวกับความน่าจะเป็น (แบบไม่มีเงื่อนไข) ของ E เราจะกล่าวว่าเหตุการณ์ E และ F เป็นเหตุการณ์ที่เป็นอิสระต่อกันเชิงสถิติ เราจะสังเกตได้ว่าความสัมพันธ์นี้เป็นความสัมพันธ์สมมาตร ทั้งนี้เนื่องจากการเป็นอิสระต่อกันนี้เขียนแทนได้เป็น P(E \cap F) = P(E)P(F).

แนวคิดหลักของทฤษฎีความน่าจะเป็นคือตัวแปรสุ่มและการแจกแจงความน่าจะเป็น โปรดดูบทความหลักสำหรับข้อมูลเพิ่มเติม

ทฤษฎีความน่าจะเป็นมีหลายแนวคิด แนวคิดหนึ่งที่ได้รับความนิยมมากในสาขาปัญญาประดิษฐ์ และเศรษฐศาสตร์คือ ทฤษฎีความน่าจะเป็นแบบเบย์

แหล่งข้อมูลอื่น[แก้]