คณิตวิเคราะห์

จากวิกิพีเดีย สารานุกรมเสรี
ตัวดึงดูดประหลาดในรูปคือแนววิถีของสมการเชิงอนุพันธ์สมการหนึ่ง สมการเชิงอนุพันธ์เป็นสาขาสำคัญของคณิตวิเคราะห์ที่มีการประยุกต์ใช้ใน วิทยาศาสตร์ และ วิศวกรรมศาสตร์ มากมาย

คณิตวิเคราะห์ (อังกฤษ: mathematical analysis) เป็นสาขาหนึ่งในวิชาคณิตศาสตร์ที่มีศึกษาการเปลี่ยนแปลงอย่างต่อเนื่องของฟังก์ชัน และรวมไปถึงสิ่งที่เกี่ยวข้องกับการเปลี่ยนแปลงอย่างต่อเนื่องนั้น[1][2] เช่น ลิมิต, อนุกรมเลข, อนุพันธ์, ปริพันธ์ รวมไปถึงหัวข้อที่ลึกซึ้งมากยิ่งขึ้น เช่น ทฤษฎีเมเชอร์และฟังก์ชันวิเคราะห์[3] โดยส่วนมากจะศึกษาในบริบทของจำนวนจริงและจำนวนเชิงซ้อนไปจนถึงฟังก์ชัน คณิตวิเคราะห์พัฒนามาจากแคลคูลัสที่มีการวิเคราะห์เชิงคณิตศาสตร์ขั้นพื้นฐานรวมอยู่ด้วย คณิตวิเคราะห์ไม่ใช่เรขาคณิตแต่ทั้งนี้สามารถใช้ในการวิเคราะห์ปริภูมิของวัตถุทางคณิตศาสตร์ที่มีความใกล้หรือระยะห่างที่จำเพาะระหว่างวัตถุได้

ประวัติ[แก้]

คณิตวิเคราะห์ในยุคโบราณ[แก้]

ผลลัพธ์แรกๆในคณิตวิเคราะห์ปรากฏโดยนัยในคณิตศาสตร์ของชาวกรีกยุคแรกๆ[4] ต่อมา นักคณิตศาสตร์ชาวกรีก เช่นยูโดซัสและอาร์คิมิดีส ได้ใช้หลักการลิมิตและการลู่เข้าที่ชัดแจ้งแต่ไม่เป็นทางการเมื่อเขาใช้ระเบียบวิธีเกษียณในการคำนวณพื้นที่และปริมาตรของขอบเขตหรือของแข็ง[5] ในอินเดีย นักคณิตศาสตร์ในศตวรรษที่ 12 ได้ยกตัวอย่างของอนุพันธ์และได้ใช้วิธีการทางคณิตศาสตร์ที่ปัจจุบันนี้เรียกว่าทฤษฎีบทของโรลล์

คณิตวิเคราะห์ในยุคกลาง[แก้]

ในช่วงศตวรรษที่ 14 Madhava of Sangamagrama ได้พัฒนาวิธีการขยายอนุกรม เช่นอนุกรมกำลังและอนุกรมเทเลอร์ของฟังก์ชันไซน์ โคไซน์ และแทงเจ็นต์ และฟังก์ชันแทงเจ็นต์ผกผัน นอกจากการพัฒนาอนุกรมเทเลอร์ที่เกี่ยวกับฟังก์ชันตรีโกณมิติแล้ว เขายังคาดคะเนความมากน้อยของเทอมผิดพลาดที่เกิดจากการลดทอนอนุกรมหล่าวนี้ได้อีกด้วย อีกทั้งยังสามารถประมาณค่าของอนุกรมอนันต์ในรูปแบบตรรกยะได้ ต่อมามีการพัฒนาต่อยอดไปอีกในช่วงศตวรรษที่ 20

คณิตวิเคราะห์สมัยใหม่[แก้]

ในยุปโรปในช่วงศตวรรษที่ 17 ตอนปลาย นิวตันและไลบ์นิซได้พัฒนาแคลคูลัสกณิกนันต์โดยเอกเทศแต่ได้บทสรุปเหมือนกันที่ได้รับการพัฒนาต่อยอดโดยงานประยุกต์ที่มีต่อๆไปในช่วงศตวรรษที่ 18 เช่นแคลคูลัสของการแปรผัน, สมการเชิงอนุพันธ์ทั่วไป และสมการเชิงอนุพันธ์แบบย่อย, การวิเคราะห์ฟูเรียร์, และฟังก์ชันก่อกำเนิด ในช่วงเวลานี้ เทคนิกทางแคลคูลัสได้รับการประยุกต์ใช้เพื่อประมาณค่าทางวิยุตคณิตโดยใช้ฟังก์ชันต่อเนื่อง

ในช่วงศตวรรษที่ 18 ออยเลอร์ได้คิดค้นแนวคิดฟังก์ชันคณิตศาสตร์[6] คณิตวิเคราะห์จำนวนจริงได้เริ่มต้นขึ้นโดยเอกเทศเมื่อเบอร์นาร์ด โบลซาโนคิดค้นคำนิยามของคำว่าความต่อเนื่องในปี 1816[7] แต่งานของโบลซาโนไม่เป็นที่รู้อย่างกว้างขวางก่อนช่วงปี 1870 ในปี 1821 โคชีได้เริ่มสร้างพื้นทางให้กับแคลคูลัสโดยเลิกคำนึงถึงความทั่วไปของพิชคณิตซึ่งเป็นสิ่งที่ออยเลอร์ให้ความสนใจมากก่อนหน้านี้ โคชีใช้แนวคิดกณิกนันต์และแนวคิดทางเรขาคณิตมาใช้ในแคลคูลัส จนทำให้เกิดคำพูดที่ว่าการเปลี่ยนแปลงเล็กน้อยมากๆของค่า x ส่งผลให้ค่า y เปลี่ยนแปลงอย่างน้อยๆเช่นกัน เขาเริ่มใช้แนวคิดอนุกรมโคชีและทฤษฎีใหม่ล่าสุดในตอนนั้นซึ่งคือคณิตวิเคราะห์เชิงซ้อน ปัวซอง, ลียูวิลล, ฟูร์เยร์ และนักคณิตศาสตร์คนอื่นๆเริ่มศึกษาสมการเชิงอนุพันธ์แบบย่อยและการวิเคราะห์ฮาร์มอนิก นั่นส่งผลให้ไวแยร์สตราสส์พัฒนาความเข้าใจลิมิตโดยใช้(ε, δ) และทำให้เกิดพื้นฐานริเริ่มของคณิตวิเคราะห์นั่นเอง

ในช่วงกลางศตวรรษ รีมันน์ได้คิดค้นทฤษฎีของการหาปริพันธ์ ต่อมาในศตวรรษที่ 19 ช่วงปลายได้มีการทำให้การวิเคราะห์มีความเป็นเลขคณิตมากขึ้นโดยไวแยร์สตราสส์ผู้ซึ่งเชื่อว่าการวิเคราะห์แบบเรขาคณิตทำให้การวิเคราะห์สับสนง่ายและพัฒนาความเข้าใจลิมิตโดยใช้(ε, δ) และทำให้เกิดพื้นฐานริเริ่มของคณิตวิเคราะห์นั่นเอง

จากนั้น นักคณิตศาสตร์เริ่มมีความกังวลเกี่ยวกับสมมติฐานที่ว่าจำนวนจริงอยู่บนเส้นจำนวนจริงที่ต่อเนื่องเพราะว่าไม่มีการพิสูจน์ เดเดคินด์จึงได้สร้างจำนวนจริงขึ้นโดยใช้ส่วนตัดเดเดคินด์ซึ่งทำให้สามารถนิยามจำนวนอตรรยะได้เป็นอย่างดี ซึ่งส่งผลให้เซตตัวเลขสมบูรณ์ ต่อมามีความพยายามที่จะพัฒนาต่อยอดงานของรีมันน์โดยการศึกษาขนาดของเซตที่ไม่ต่อเนื่องในฟังก์ชันจำนวนจริง

หลังจากนั่นเริ่มมีการพัฒนาการวัดของจอร์ดันและทฤษฎีเซตสามัญรวมไปถึงทฤษฎีบทการแยกประเภทของแบร์ ในช่วงต้นศตวรรษที่ 20 แคลคูลัสได้พัฒนาขึ้นภายใต้สัจพจน์ที่เป็นทฤษฎีเซต เลอเบกแก้ไขปัญหาทฤษฎีเมเชอร์และฮิลแบร์ทได้คิดค้นปริภูมิฮิลแบร์ทเพื่อแก้สมการเชิงปริพันธ์ ปริภูมิเวกเตอร์บรรทัดฐานได้เป็นพื้นฐานให้กับการวิเคราะห์เชิงฟังก์ชันในเวลาต่อมาในช่วง 1920 ผ่านงานของ สเตฟาน บานาค

สาขาย่อย[แก้]

คณิตวิเคราะห์มีสาขาย่อยหลัก ๆ ดังต่อไปนี้

การวิเคราะห์เชิงจริง[แก้]

การวิเคราะห์เชิงซ้อน[แก้]

สมการเชิงอนุพันธ์[แก้]

การวิเคราะห์เชิงฟังก์ชัน[แก้]

ทฤษฎีเมเชอร์[แก้]

การวิเคราะห์เชิงตัวเลข[แก้]


นอกจากนี้ยังมีหัวข้ออื่น ๆ ที่เป็นสาขาย่อยของคณิตวิเคราะห์ลงไปอีก ได้แก่

หมายเหตุ[แก้]

  1. "Analysis | mathematics". Encyclopedia Britannica (ภาษาอังกฤษ).
  2. "Mathematical analysis - Encyclopedia of Mathematics". encyclopediaofmath.org.
  3. Edwin Hewitt and Karl Stromberg, "Real and Abstract Analysis", Springer-Verlag, 1965
  4. Stillwell (2004). "Infinite Series". p. 170. Infinite series were present in Greek mathematics, [...] There is no question that Zeno's paradox of the dichotomy (Section 4.1), for example, concerns the decomposition of the number 1 into the infinite series 12 + 122 + 123 + 124 + ... and that Archimedes found the area of the parabolic segment (Section 4.4) essentially by summing the infinite series 1 + 14 + 142 + 143 + ... = 43. Both these examples are special cases of the result we express as summation of a geometric series {{cite book}}: |title= ไม่มีหรือว่างเปล่า (help)
  5. (Smith, 1958)
  6. Dunham, William (1999). Euler: The Master of Us All. The Mathematical Association of America. p. 17.
  7. *Cooke, Roger (1997). "Beyond the Calculus". The History of Mathematics: A Brief Course. Wiley-Interscience. p. 379. ISBN 0-471-18082-3. Real analysis began its growth as an independent subject with the introduction of the modern definition of continuity in 1816 by the Czech mathematician Bernard Bolzano (1781–1848)

อ้างอิง[แก้]

ดูเพิ่ม[แก้]