คณิตวิเคราะห์

จากวิกิพีเดีย สารานุกรมเสรี

คณิตวิเคราะห์ (อังกฤษ: mathematical analysis) เป็นสาขาหนึ่งในวิชาคณิตศาสตร์ที่มีเนื้อหาเกี่ยวเนื่องกับอนุพันธ์, ปริพันธ์และทฤษฎีเมเชอร์, ลิมิต, อนุกรมเลข,[1] และฟังก์ชันวิเคราะห์ โดยส่วนมากจะศึกษาในบริบทของจำนวนจริงและจำนวนเชิงซ้อนไปจนถึงฟังก์ชัน คณิตวิเคราะห์พัฒนามาจากแคลคูลัสที่มีการวิเคราะห์เชิงคณิตศาสตร์ขั้นพื้นฐานรวมอยู่ด้วย คณิตวิเคราะห์ไม่ใช่เรขาคณิตแต่ทั้งนี้สามารถใช้ในการวิเคราะห์ปริภูมิของวัตถุทางคณิตศาสตร์ที่มีความใกล้หรือระยะห่างที่จำเพาะระหว่างวัตถุได้

ประวัติ[แก้]

ผลลัพธ์แรกๆในคณิตวิเคราะห์ปรากฏโดยนัยในคณิตศาสตร์ของชาวกรีกยุคแรกๆ[2] ต่อมา นักคณิตศาสตร์ชาวกรีก เช่นยูโดซัสและอาร์คิมิดีส ได้ใช้หลักการลิมิตและการลู่เข้าที่ชัดแจ้งแต่ไม่เป็นทางการเมื่อเขาใช้ระเบียบวิธีเกษียณในการคำนวณพื้นที่และปริมาตรของขอบเขตหรือของแข็ง[3] ในอินเดีย นักคณิตศาสตร์ในศตวรรษที่ 12 ได้ยกตัวอย่างของอนุพันธ์และได้ใช้วิธีการทางคณิตศาสตร์ที่ปัจจุบันนี้เรียกว่าทฤษฎีบทของโรลล์

ในช่วงศตวรรษที่ 14 Madhava of Sangamagrama ได้พัฒนาวิธีการขยายอนุกรม เช่นอนุกรมกำลังและอนุกรมเทเลอร์ของฟังก์ชันไซน์ โคไซน์ และแทงเจ็นต์ และฟังก์ชันแทงเจ็นต์ผกผัน นอกจากการพัฒนาอนุกรมเทเลอร์ที่เกี่ยวกับฟังก์ชันตรีโกณมิติแล้ว เขายังคาดคะเนความมากน้อยของเทอมผิดพลาดที่เกิดจากการลดทอนอนุกรมหล่าวนี้ได้อีกด้วย อีกทั้งยังสามารถประมาณค่าของอนุกรมอนันต์ในรูปแบบตรรกยะได้ ต่อมามีการพัฒนาต่อยอดไปอีกในช่วงศตวรรษที่ 20

ในยุปโรปในช่วงศตวรรษที่ 17 ตอนปลาย นิวตันและไลบ์นิซได้พัฒนาแคลคูลัสกณิกนันต์โดยเอกเทศแต่ได้บทสรุปเหมือนกันที่ได้รับการพัฒนาต่อยอดโดยงานประยุกต์ที่มีต่อๆไปในช่วงศตวรรษที่ 18 เช่นแคลคูลัสของการแปรผัน, สมการเชิงอนุพันธ์ทั่วไป และสมการเชิงอนุพันธ์แบบย่อย, การวิเคราะห์ฟูเรียร์, และฟังก์ชันก่อกำเนิด ในช่วงเวลานี้ เทคนิกทางแคลคูลัสได้รับการประยุกต์ใช้เพื่อประมาณค่าทางวิยุตคณิตโดยใช้ฟังก์ชันต่อเนื่อง

ในช่วงศตวรรษที่ 18 ออยเลอร์ได้คิดค้นแนวคิดฟังก์ชันคณิตศาสตร์[4] คณิตวิเคราะห์จำนวนจริงได้เริ่มต้นขึ้นโดยเอกเทศเมื่อเบอร์นาร์ด โบลซาโนคิดค้นคำนิยามของคำว่าความต่อเนื่องในปี 1816[5] แต่งานของโบลซาโนไม่เป็นที่รู้อย่างกว้างขวางก่อนช่วงปี 1870 ในปี 1821 โคชีได้เริ่มสร้างพื้นทางให้กับแคลคูลัสโดยเลิกคำนึงถึงความทั่วไปของพิชคณิตซึ่งเป็นสิ่งที่ออยเลอร์ให้ความสนใจมากก่อนหน้านี้ โคชีใช้แนวคิดกณิกนันต์และแนวคิดทางเรขาคณิตมาใช้ในแคลคูลัส จนทำให้เกิดคำพูดที่ว่าการเปลี่ยนแปลงเล็กน้อยมากๆของค่า x ส่งผลให้ค่า y เปลี่ยนแปลงอย่างน้อยๆเช่นกัน เขาเริ่มใช้แนวคิดอนุกรมโคชีและทฤษฎีใหม่ล่าสุดในตอนนั้นซึ่งคือคณิตวิเคราะห์เชิงซ้อน ปัวซอง, ลียูวิลล, ฟูร์เยร์ และนักคณิตศาสตร์คนอื่นๆเริ่มศึกษาสมการเชิงอนุพันธ์แบบย่อยและการวิเคราะห์ฮาร์มอนิก นั่นส่งผลให้ไวแยร์สตราสส์พัฒนาความเข้าใจลิมิตโดยใช้(ε, δ) และทำให้เกิดพื้นฐานริเริ่มของคณิตวิเคราะห์นั่นเอง

ในช่วงกลางศตวรรษ รีมันน์ได้คิดค้นทฤษฎีของการหาปริพันธ์ ต่อมาในศตวรรษที่ 19 ช่วงปลายได้มีการทำให้การวิเคราะห์มีความเป็นเลขคณิตมากขึ้นโดยไวแยร์สตราสส์ผู้ซึ่งเชื่อว่าการวิเคราะห์แบบเรขาคณิตทำให้การวิเคราะห์สับสนง่ายและพัฒนาความเข้าใจลิมิตโดยใช้(ε, δ) และทำให้เกิดพื้นฐานริเริ่มของคณิตวิเคราะห์นั่นเอง

จากนั้น นักคณิตศาสตร์เริ่มมีความกังวลเกี่ยวกับสมมติฐานที่ว่าจำนวนจริงอยู่บนเส้นจำนวนจริงที่ต่อเนื่องเพราะว่าไม่มีการพิสูจน์ เดเดคินด์จึงได้สร้างจำนวนจริงขึ้นโดยใช้ส่วนตัดเดเดคินด์ซึ่งทำให้สามารถนิยามจำนวนอตรรยะได้เป็นอย่างดี ซึ่งส่งผลให้เซตตัวเลขสมบูรณ์ ต่อมามีความพยายามที่จะพัฒนาต่อยอดงานของรีมันน์โดยการศึกษาขนาดของเซตที่ไม่ต่อเนื่องในฟังก์ชันจำนวนจริง

หลังจากนั่นเริ่มมีการพัฒนาการวัดของจอร์ดันและทฤษฎีเซตสามัญรวมไปถึงทฤษฎีบทการแยกประเภทของแบร์ ในช่วงต้นศตวรรษที่ 20 แคลคูลัสได้พัฒนาขึ้นภายใต้สัจพจน์ที่เป็นทฤษฎีเซตเลอเบกแก้ไขปัญหาทฤษฎีเมเชอร์และฮิลแบร์ทได้คิดค้นปริภูมิฮิลแบร์ทเพื่อแก้สมการเชิงปริพันธ์ ปริภูมิเวกเตอร์บรรทัดฐานได้เป็นพื้นฐานให้กับการวิเคราะห์ฟังก์ชันในเวลาต่อมาในช่วง 1920

สาขาย่อย[แก้]

คณิตวิเคราะห์มีสาขาย่อยต่างๆดังต่อไปนี้

การวิเคราะห์แบบคลาสิก[แก้]

การวิเคราะห์แบบคลาสิกเป็นการวิเคราะห์ใดๆที่ไม่ใช้เทคนิกวิเคราะห์ฟังก์ชัน การวิเคราะห์รูปแบบนี้อยู่ในกลุ่มการวิเคราะห์แบบดั้งเดิม

หมายเหตุ[แก้]

  1. Edwin Hewitt and Karl Stromberg, "Real and Abstract Analysis", Springer-Verlag, 1965
  2. Stillwell (2004). "Infinite Series". p. 170. "Infinite series were present in Greek mathematics, [...] There is no question that Zeno's paradox of the dichotomy (Section 4.1), for example, concerns the decomposition of the number 1 into the infinite series 12 + 122 + 123 + 124 + ... and that Archimedes found the area of the parabolic segment (Section 4.4) essentially by summing the infinite series 1 + 14 + 142 + 143 + ... = 43. Both these examples are special cases of the result we express as summation of a geometric series" 
  3. (Smith, 1958)
  4. Dunham, William (1999). Euler: The Master of Us All. The Mathematical Association of America. p. 17. 
  5. *Cooke, Roger (1997). "Beyond the Calculus". The History of Mathematics: A Brief Course. Wiley-Interscience. p. 379. ISBN 0-471-18082-3. "Real analysis began its growth as an independent subject with the introduction of the modern definition of continuity in 1816 by the Czech mathematician Bernard Bolzano (1781–1848)" 
  6. Carl L. Devito, "Functional Analysis", Academic Press, 1978

อ้างอิง[แก้]

ดูเพิ่ม[แก้]