ผลต่างระหว่างรุ่นของ "โมเมนตัม"

จากวิกิพีเดีย สารานุกรมเสรี
เนื้อหาที่ลบ เนื้อหาที่เพิ่ม
ไม่มีความย่อการแก้ไข
Jakkapan31 (คุย | ส่วนร่วม)
ไม่มีความย่อการแก้ไข
บรรทัด 50: บรรทัด 50:
==== การชนแบบไม่ยืดหยุ่น ====
==== การชนแบบไม่ยืดหยุ่น ====
ตัวอย่างที่พบเห็นได้ของการชนแบบไม่ยืดหยุ่น คือการที่วัตถุชนแล้วติดกัน (ไถลไปด้วยกัน) สมการต่อไปนี้จะแสดงการอนุรักษ์โมเมนตัม
ตัวอย่างที่พบเห็นได้ของการชนแบบไม่ยืดหยุ่น คือการที่วัตถุชนแล้วติดกัน (ไถลไปด้วยกัน) สมการต่อไปนี้จะแสดงการอนุรักษ์โมเมนตัม

เมื่อชนแล้ววัตถุจะติดกันไปโมเมนตัมก่อนชน = หลังชน ส่วนพลังงานจลน์ไม่เท่ากัน เช่น รถยนต์ชนกัน
::<math>m_1 \mathbf v_{1,i} + m_2 \mathbf v_{2,i} = \left ( m_1 + m_2 \right) \mathbf v_f \,</math>
::<math>m_1 \mathbf v_{1,i} + m_2 \mathbf v_{2,i} = \left ( m_1 + m_2 \right) \mathbf v_f \,</math>

:: {| class="wikitable"
|''' การเคลื่อนที่ของจุดศูนย์กลางมวล'''
|}
:: เมื่อวัตถุคู่หนึ่งวิ่งเข้าหากัน หรือวิ่งออกจากกันจุดศูนย์กลางของมวลของวัตถุคู่นั้นย่อมมีการเคลื่อนที่ไปด้วย การศึกษาการชนกันของวัตถุอาจพิจารณาถึงจุดศูนย์กลางมวลได้เช่นกัน ความเร็วของจุดศูนย์กลางของมวลจะเป็นไปตามสมการ

== '''การประยุกต์ใช้ความรู้เรื่องโมเมนตัม''' ==
:: โมเมนตัมเป็นปริมาณเวกเตอร์ มีทิศทางตามทิศของความเร็ว มีหน่วยเป็น กิโลกรัม-เมตรต่อนาที (kg.m/s) เนื่องจากโมเมนตัมเป็นปริมาณเวกเตอร์ ดังนั้นโมเมนตัมสามารถแตกเข้าสู่แกน X และ Y ได้ และมีวิธีการรวมตามหลักของเวกเตอร์โดยทั่วไป จากความหมายของโมเมนตัมพบว่า ค่าของโมเมนตัมขึ้นอยู่กับมวลและความเร็ว ถ้าวัตถุกำลังเคลื่อนที่มีการเปลี่ยนแปลงความเร็วผลคือ โมเมนตัมก็จะมีการเปลี่ยนแปลงด้วย และสิ่งที่ทำให้ความเร็วของวัตถุเปลี่ยนแปลงคือแรง ดังนั้นแรงจึงเป็นตัวการสำคัญที่ทำให้ความเร็วและโมเมนตัมของวัตถุเกิดการเปลี่ยนแปลง หรืออาจกล่าวได้ว่า “แรงทำให้โมเมนตัมของวัตถุเปลี่ยนแปลง” 


== การเปลี่ยนแปลงโมเมนตัม ==
== การเปลี่ยนแปลงโมเมนตัม ==

รุ่นแก้ไขเมื่อ 16:28, 26 มีนาคม 2560

โมเมนตัม หมายถึง ความสามารถในการเคลื่อนที่ของวัตถุ ซึ่งมีค่าเท่ากับผลคูณระหว่างมวลและความเร็วของวัตถุ มวลเป็นปริมาณสเกลาร์ แต่ความเร็วเป็นปริมาณเวกเตอร์ เมื่อนำปริมาณทั้งสองเข้าคูณด้วยกัน ถือว่าปริมาณใหม่เป็นปริมาณเวกเตอร์เสมอ ฉะนั้นโมเมนตัมจึงเป็นปริมาณเวกเตอร์ คือมีทั้งขนาดและทิศทาง

โมเมนตัมในกลศาสตร์ดั้งเดิม

ถ้าวัตถุเคลื่อนที่อยู่ในกรอบอ้างอิงใด ๆ ก็ตาม วัตถุนั้นจะมีโมเมนตัมอยู่ในกรอบอ้างอิงนั้น ๆ ค่าของโมเมนตัมของวัตถุจะขึ้นอยู่กับสองตัวแปร คือมวลกับความเร็วดังที่ได้กล่าวมาแล้ว ความสัมพันธ์ของตัวแปรทั้งสองเขียนได้เป็น:

โมเมนตัม = มวล × ความเร็ว

ในวิชาฟิสิกส์ สัญลักษณ์ของโมเมนตัมคือตัวอักษร p ดังนั้นอาจเขียนสมการข้างบนใหม่ได้เป็น:

โดยที่ m แทนมวล และ v แทนความเร็ว หน่วยเอสไอของโมเมนตัม คือ กิโลกรัม เมตรต่อวินาที (kg m/s) ความเร็วของวัตถุจะให้ทั้งขนาด (อัตราเร็ว) และทิศทาง โมเมนตัมของวัตถุขึ้นอยู่กับความเร็ว จึงทำให้เป็นปริมาณเวกเตอร์

การเปลี่ยนแปลงโมเมนตัมของวัตถุ เราเรียกว่า การดล ซึ่งหาได้จาก มวล × การเปลี่ยนแปลงความเร็ว หรือ แรงที่กระทำต่อวัตถุ × เวลาที่แรงนั้นกระทำ

ก็จะได้ว่า Mometum (kg.m/s) = mass(kg) x velocity(m/s) หรือ Momentum = มวลของวัตถุ x ความเร็วของวัตถุ

กฎการอนุรักษ์โมเมนตัม และการชน

กฎการอนุรักษ์โมเมนตัมมีใจความว่า "ถ้าไม่มีแรงภายนอกกระทำต่อระบบแล้วโมเมนตัมของระบบจะมีค่าคงตัว" ในกรณีวัตถุสองก้อนขึ้นไปเคลื่อนที่มาชนกัน หรือเคลื่อนที่แยกจากกัน กฎการอนุรักษ์โมเมนตัมก็ยังคงเป็นจริงเสมอ อาจเขียนเป็นลักษณะสมการได้ว่า ผลรวมโมเมนตัมของวัตถุก่อนชนเท่ากับผลรวมโมเมนตัมของวัตถุหลังชน กล่าวคือ เมื่ออยู่ในระบบปิด คือ ไม่มีการแลกเปลี่ยนพลังงานระหว่างระบบกับสิ่งแวดล้อม ซึ่งก็คือโมเมนตัมจะถูกอนุรักษ์อยู่เสมอ (ไม่เพิ่มขึ้น และในขณะเดียวกันก็ไม่ลดหายไป) แม้แต่ในการชน พลังงานจลน์นั้นจะไม่ถูกอนุรักษ์ในการชน ถ้าการชนนั้นเป็นการชนแบบไม่ยืดหยุ่น เนื่องจากการคงตัวของโมเมนตัมที่กล่าวมาแล้ว จึงทำให้สามารถนำไปคำนวณความเร็วที่ไม่ทราบค่าภายหลังการชนได้

ปัญหาในวิชาฟิสิกส์ที่จะต้องใช้ความจริงที่กล่าวมานี้ ก็คือการชนกันของสองอนุภาค โดยผลรวมของโมเมนตัมก่อนการชนจะต้องเท่ากับผลรวมของโมเมนตัมหลังการชนเสมอ

โดยที่ตัวห้อย i แสดงถึงก่อนการชน และตัวห้อย f แสดงถึงหลังการชน

โดยปกติ เราจะทราบเพียงความเร็วก่อนการชน หรือหลังการชน ไม่อย่างใดก็อย่างหนึ่ง และต้องการที่จะทราบความเร็วอีกตัวหนึ่ง การแก้ไขปัญหานี้อย่างถูกต้องจะทำให้เราทราบว่าการชนนั้นเป็นอย่างไร การชนนั้นมีสองประเภท ดังต่อไปนี้

การชนทั้งสองประเภทที่ได้กล่าวมานี้ เป็นการชนที่อนุรักษ์โมเมนตัมทั้งหมด

การชนแบบยืดหยุ่น

การชนกันของลูกสนุ้กเกอร์สองลูก เป็นตัวอย่างหนึ่งของการชนแบบยืดหยุ่น นอกเหนือจากที่โมเมนตัมรวมกันก่อนชนต้องเท่ากับโมเมนตัมรวมกันหลังชนแล้ว ผลรวมของพลังงานจลน์ก่อนการชนจะต้องเท่ากับผลรวมของพลังงานจลน์หลังการชนด้วย

เนื่องจากตัวประกอบ 1/2 มีอยู่แล้วทุก ๆ พจน์ จึงสามารถนำออกไปได้

การชนแบบพุ่งตรง (การชนในหนึ่งมิติ)

ในกรณีที่วัตถุพุ่งเข้าชนกันแบบเต็ม ๆ เป็นทางตรง เราสามารถหาความเร็วปลายได้เป็น


การชนแบบไม่ยืดหยุ่น

ตัวอย่างที่พบเห็นได้ของการชนแบบไม่ยืดหยุ่น คือการที่วัตถุชนแล้วติดกัน (ไถลไปด้วยกัน) สมการต่อไปนี้จะแสดงการอนุรักษ์โมเมนตัม

เมื่อชนแล้ววัตถุจะติดกันไปโมเมนตัมก่อนชน = หลังชน ส่วนพลังงานจลน์ไม่เท่ากัน เช่น รถยนต์ชนกัน

 การเคลื่อนที่ของจุดศูนย์กลางมวล
เมื่อวัตถุคู่หนึ่งวิ่งเข้าหากัน หรือวิ่งออกจากกันจุดศูนย์กลางของมวลของวัตถุคู่นั้นย่อมมีการเคลื่อนที่ไปด้วย การศึกษาการชนกันของวัตถุอาจพิจารณาถึงจุดศูนย์กลางมวลได้เช่นกัน ความเร็วของจุดศูนย์กลางของมวลจะเป็นไปตามสมการ

การประยุกต์ใช้ความรู้เรื่องโมเมนตัม

โมเมนตัมเป็นปริมาณเวกเตอร์ มีทิศทางตามทิศของความเร็ว มีหน่วยเป็น กิโลกรัม-เมตรต่อนาที (kg.m/s) เนื่องจากโมเมนตัมเป็นปริมาณเวกเตอร์ ดังนั้นโมเมนตัมสามารถแตกเข้าสู่แกน X และ Y ได้ และมีวิธีการรวมตามหลักของเวกเตอร์โดยทั่วไป จากความหมายของโมเมนตัมพบว่า ค่าของโมเมนตัมขึ้นอยู่กับมวลและความเร็ว ถ้าวัตถุกำลังเคลื่อนที่มีการเปลี่ยนแปลงความเร็วผลคือ โมเมนตัมก็จะมีการเปลี่ยนแปลงด้วย และสิ่งที่ทำให้ความเร็วของวัตถุเปลี่ยนแปลงคือแรง ดังนั้นแรงจึงเป็นตัวการสำคัญที่ทำให้ความเร็วและโมเมนตัมของวัตถุเกิดการเปลี่ยนแปลง หรืออาจกล่าวได้ว่า “แรงทำให้โมเมนตัมของวัตถุเปลี่ยนแปลง” 

การเปลี่ยนแปลงโมเมนตัม

ในกลศาสตร์ดั้งเดิม การดลจะเปลี่ยนแปลงโมเมนตัมของวัตถุ โดยการดลมีหน่วยและมิติเหมือนโมเมนตัมทุกประการ หน่วยเอสไอของการดลนั้นเหมือนกับหน่วยของโมเมนตัม (กิโลกรัม เมตร/วินาที) การดลสามารถคำนวณได้จากปริพันธ์ของแรงกับเวลา

โดยที่

I แทนการดล หน่วยเป็นกิโลกรัม เมตรต่อวินาที
F แทนแรง หน่วยเป็นนิวตัน
t เป็นเวลา หน่วยเป็นวินาที

หากมีแรงคงตัว การดลมักจะเขียนเป็น

โดยที่

เป็นเวลาที่แรง F กระทำ

จากนิยามของแรง

ทำให้ได้ว่าการดลคือการเปลี่ยนแปลงโมเมนตัม

ดูเพิ่ม

อ้างอิง

  • Halliday, David (1960–2007). Fundamentals of Physics. John Wiley & Sons. Chapter 9. {{cite book}}: ไม่รู้จักพารามิเตอร์ |coauthors= ถูกละเว้น แนะนำ (|author=) (help); ไม่รู้จักพารามิเตอร์ |nopp= ถูกละเว้น แนะนำ (|no-pp=) (help)CS1 maint: date format (ลิงก์)
  • Serway, Raymond; Jewett, John (2003). Physics for Scientists and Engineers (6 ed.). Brooks Cole. ISBN 0-534-40842-7
  • Stenger, Victor J. (2000). Timeless Reality: Symmetry, Simplicity, and Multiple Universes. Prometheus Books. Chpt. 12 in particular.
  • Tipler, Paul (1998). Physics for Scientists and Engineers: Vol. 1: Mechanics, Oscillations and Waves, Thermodynamics (4th ed.). W. H. Freeman. ISBN 1-57259-492-6
  • Hand, Louis N.; Finch, Janet D. Analytical Mechanics. Cambridge University Press. Chapter 4. {{cite book}}: ไม่รู้จักพารามิเตอร์ |nopp= ถูกละเว้น แนะนำ (|no-pp=) (help)

แหล่งข้อมูลอื่น