เลออนฮาร์ด ออยเลอร์

จากวิกิพีเดีย สารานุกรมเสรี
ภาพของเลออนฮาร์ด ออยเลอร์ วาดโดยจิตรกร เอ็มมานูเอล ฮันด์มันน์ (Emanuel Handmann) เมื่อ ค.ศ.1753

เลออนฮาร์ด ออยเลอร์ (เยอรมัน: Leonhard Euler, 15 เมษายน พ.ศ. 225018 กันยายน พ.ศ. 2326) เป็นนักคณิตศาสตร์และนักฟิสิกส์ชาวสวิส ได้ชื่อว่าเป็นนักคณิตศาสตร์ที่ยิ่งใหญ่ที่สุดคนหนึ่งของโลก เลออนฮาร์ด ออยเลอร์ เป็นบุคคลแรกที่เริ่มใช้คำว่า "ฟังก์ชัน"[1] ในแวดวงคณิตศาสตร์ (ตามคำนิยามของไลบ์นิซ ใน ค.ศ. 1694) ในการบรรยายถึงความสัมพันธ์ที่เกี่ยวข้องกับตัวแปร เช่น y = f(x) นอกจากนี้ เขายังเป็นคนแรกที่นำแคลคูลัสเข้าไปประยุกต์ในศาสตร์ฟิสิกส์

ออยเลอร์เกิดและโตในเมืองบาเซิล เขาเป็นเด็กที่มีความเป็นอัจฉริยะทางคณิตศาสตร์ เขาเป็นศาสตราจารย์สอนวิชาคณิตศาสตร์ที่เซนต์ปีเตอร์สเบิร์ก และต่อมาก็สอนที่เบอร์ลิน และกลับไปอยู่ที่เซนต์ปีเตอร์สเบิร์กจวบจนวาระสุดท้ายของชีวิต เขาเป็นนักคณิตศาสตร์มีผลงานมากมายที่สุดคนหนึ่ง ผลงานทั้งหมดของเขารวบรวมได้ถึง 75 เล่ม ผลงานเหล่านี้มีอิทธิพลอย่างมากต่อการพัฒนาของคณิตศาสตร์ในศตวรรษที่ 18 ออยเลอร์สูญเสียการมองเห็นและตาบอดสนิทตลอด 17 ปีสุดท้ายในชีวิตของเขา ถึงกระนั้น ในช่วงนี้เองที่เขาสามารถผลิตผลงานได้มากถึงครึ่งหนึ่งของผลงานทั้งหมดที่เขาผลิตขึ้นมา

ดาวเคราะห์น้อย 2002 ออยเลอร์ ตั้งชื่อเพื่อเป็นเกียรติแก่เขา

ผลงาน[แก้]

การตีความหมายเชิงเรขาคณิตของสูตรของออยเลอร์

ออยเลอร์มีผลงานในแทบทุกสาขาของวิชาคณิตศาสตร์ เช่น เรขาคณิต แคลคูลัส ตรีโกณมิติ พีชคณิต ทฤษฎีจำนวน เป็นต้น เช่นเดียวกับแวดวงฟิสิกส์ เช่น ผลงานเรื่องกลศาสตรความตอเนื่อง ทฤษฎีการเคลื่อนที่ของดวงจันทร์ เป็นต้น ออยเลอร์ถือว่าเป็นบุคคลสำคัญคนหนึ่งในประวัติศาสตร์แห่งคณิตศาสตร์

ออยเลอร์ได้รับการตั้งเป็นชื่อของจำนวน 2 จำนวน อันได้แก่ จำนวนของออยเลอร์ (e) ซึ่งมีค่าประมาณ 2.71828 และ ค่าคงตัวออยเลอร์-แมสเชโรนี (γ) มีค่าประมาณ 0.57721

ตัวอย่างสูตรคณิตศาสตร์ที่ออยเลอร์คิดค้น

e^x = \sum_{n=0}^\infty {x^n \over n!} = \lim_{n \to \infty}\left(\frac{1}{0!} + \frac{x}{1!} + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!}\right).
\sum_{n=1}^\infty {1 \over n^2} = \lim_{n \to \infty}\left(\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots + \frac{1}{n^2}\right) = \frac{\pi ^2}{6}.
e^{i\varphi} = \cos \varphi + i\sin \varphi.\,สูตรของออยเลอร์ : สมการแสดงความสัมพันธ์ระหว่างฟังก์ชันตรีโกณมิติกับฟังก์ชันเลขชี้กำลังเชิงซ้อน
e^{i \pi} +1 = 0 \, เอกลักษณ์ของออยเลอร์ : เป็นกรณีหนึ่งของสูตรออยเลอร์ (\varphi = \pi) โดยแสดงค่าคงตัวทางคณิตศาสตร์ถึง 5 อย่าง (ได้แก่ e, i, π, 1, 0)

เครื่องหมายทางคณิตศาสตร์[แก้]

ออยเลอร์เป็นผู้นำเสนอข้อตกลงเรื่องเครื่องหมายทางคณิตศาสตร์จำนวนมากผ่านผลงานของเขา จนเกิดการนิยมใช้กันอย่างแพร่หลาย ตัวอย่างที่เด่นชัดที่สุดคือ เขาเป็นผู้เสนอความคิดรวบยอดเรื่องฟังก์ชัน[1] และใช้สัญลักษณ์ f(x) เป็นครั้งแรก ซึ่งมีความหมายว่า ฟังก์ชัน f ใด ๆ ที่ใช้เข้ากับตัวแปร (อาร์กิวเมนต์) x นอกจากนี้ ออยเลอร์ยังคิดค้นเครื่องหมายตรีโกณมิติที่ใช้กันอย่างแพร่หลายในปัจจุบัน ใช้อักษร e แทนฐานของลอการิทึมธรรมชาติ (ในปัจจุบัน e มีชื่อว่าจำนวนของออยเลอร์) ใช้อักษรกรีก Σ (ซิกมา) แทนสัญกรณ์ผลรวมจากการบวกของเซตจำนวน และใช้อักษร i แทนหน่วยจินตภาพ[2] เป็นต้น นอกจากนี้ ออยเลอร์ยังใช้อักษรกรีก π ที่แสดงถึงอัตราส่วนระหว่างเส้นรอบวงต่อเส้นผ่านศูนย์กลางของวงกลมใด ๆ ซึ่งเป็นผลให้เกิดความนิยมใช้กันอย่างแพร่หลาย แม้ว่าเขาจะไม่ได้เป็นผู้ริเริ่มใช้ก็ตาม[3]

ดูเพิ่ม[แก้]

อ้างอิง[แก้]

  1. 1.0 1.1 Dunham 1999, p. 17
  2. Boyer, Carl B.; Uta C. Merzbach (1991). A History of Mathematics. John Wiley & Sons. pp. 439–445. ISBN 0-471-54397-7. 
  3. Stephen Wolfram, Mathematical Notation: Past and Future

แหล่งข้อมูลอื่น[แก้]