ทฤษฎีบทมูลฐานของแคลคูลัส

จากวิกิพีเดีย สารานุกรมเสรี
หัวข้อที่เกี่ยวข้องกับแคลคูลัส

ทฤษฎีบทมูลฐานของแคลคูลัส | ฟังก์ชัน | ลิมิตของฟังก์ชัน | ความต่อเนื่อง | แคลคูลัสกับพหุนาม | ทฤษฎีบทค่าเฉลี่ย | แคลคูลัสเวกเตอร์ | แคลคูลัสเทนเซอร์

อนุพันธ์

กฎผลคูณ | กฎผลหาร | กฎลูกโซ่ | อนุพันธ์โดยปริยาย | ทฤษฎีบทของเทย์เลอร์

ปริพันธ์
การหาปริพันธ์โดยการแทนค่า | การหาปริพันธ์เป็นส่วน | การหาปริพันธ์โดยการแทนที่ฟังก์ชันตรีโกณมิติ | การหาปริพันธ์แบบจาน | การหาปริพันธ์ด้วยเชลล์ | การหาปริพันธ์แบบต่าง ๆ

ทฤษฎีบทมูลฐานของแคลคูลัส กล่าวว่าอนุพันธ์ และปริพันธ์ ซึ่งเป็นการดำเนินการหลักในแคลคูลัสนั้นผกผันกัน ซึ่งหมายความว่าถ้านำฟังก์ชันต่อเนื่องใดๆมาหาปริพันธ์ แล้วนำมาหาอนุพันธ์ เราจะได้ฟังก์ชันเดิม ทฤษฎีบทนี้เหมือนว่าเป็นหัวใจสำคัญของแคลคูลัสที่นับได้ว่าเป็นทฤษฎีบทมูลฐานของทั้งสาขานี้ ผลต่อเนื่องที่สำคัญของทฤษฎีบทนี้ ซึ่งบางทีเรียกว่าทฤษฎีบทมูลฐานของแคลคูลัสบทที่สองนั้นทำให้เราสามารถคำนวณหาปริพันธ์โดยใช้ปฏิยานุพันธ์ ของฟังก์ชัน

ภาพโดยทั่วไป[แก้]

โดยทั่วไปแล้ว ทฤษฎีบทนี้กล่าวว่าผลรวมของการเปลี่ยนแปลงที่น้อยยิ่ง ในปริมาณในช่วงเวลา (หรือปริมาณอื่นๆ) นั้นเข้าใกล้การเปลี่ยนแปลงรวม

เพื่อให้เห็นด้วยกับข้อความนี้ เราจะเริ่มด้วยตัวอย่างนี้ สมมติว่าอนุภาคเดินทางบนเส้นตรงโดยมีตำแหน่งจากฟังก์ชัน x(t) เมื่อ t คือเวลา อนุพันธ์ของฟังก์ชันนี้เท่ากับความเปลี่ยนแปลงที่น้อยมากๆของ x ต่อช่วงเวลาที่น้อยมากๆ (แน่นอนว่าอนุพันธ์ต้องขึ้นอยู่กับเวลา) เรานิยามความเปลี่ยนแปลงของระยะทางต่อช่วงเวลาว่าเป็นอัตราเร็ว v ของอนุภาค ด้วยสัญกรณ์ของไลบ์นิซ

\frac{dx}{dt} = v(t)

เมื่อจัดรูปสมการใหม่จะได้

dx = v(t)\,dt

จากตรรกะข้างต้น ความเปลี่ยนแปลงใน x ที่เรียกว่า \Delta x คือผลรวมของการเปลี่ยนแปลงที่น้อยมากๆ dx มันยังเท่ากับผลรวมของผลคูณระหว่างอนุพันธ์และเวลาที่น้อยมากๆ ผลรวมอนันต์นี้คือปริพันธ์ ดังนั้นการหาปริพันธ์ทำให้เราสามารถคืนฟังก์ชันต้นของมันจากอนุพันธ์เช่นเดียวกัน การดำเนินการนี้ผกผันกัน หมายความว่าเราสามารถหาอนุพันธ์ของผลการหาปริพันธ์ ซึ่งจะได้ฟังก์ชันอัตราเร็วคืนมาได้

เนื้อหาของทฤษฎีบท[แก้]

ทฤษฎีบทนี้ว่าไว้ว่า

ให้ f เป็นฟังก์ชันต่อเนื่องบนช่วง [a, b] ถ้า F เป็นฟังก์ชันที่นิยามสำหรับ x ที่อยู่ใน [a, b] ว่า

F(x) = \int_a^x f(t)\, dt

แล้ว

F'(x) = f(x)\,

สำหรับทุก x ที่อยู่ใน [a, b]

ให้ f เป็นฟังก์ชันต่อเนื่องบนช่วง [a, b] ถ้า F เป็นฟังก์ชันที่

f(x) = F'(x)\,สำหรับทุก x ที่อยู่ใน [a, b]

แล้ว

\int_a^b f(x)\,dx = F(b) - F(a)

ผลที่ตามมา[แก้]

ให้ f เป็นฟังก์ชันที่มีความต่อเนื่องบนช่วง [a, b]. ถ้า F เป็นฟังก์ชันที่

f(x) = F'(x)\, สำหรับทุก x ที่อยู่ใน [a, b]

แล้ว

F(x) = \int_a^x f(t)\,dt + F(a)

และ

f(x) = \frac{d}{dx} \int_a^x f(t)\,dt

บทพิสูจน์[แก้]

ส่วนที่ 1[แก้]

กำหนดให้

F(x) = \int_{a}^{x} f(t) dt

ให้ x1 และ x1 + Δx อยู่ในช่วง [a, b] จะได้

F(x_1) = \int_{a}^{x_1} f(t) dt

และ

F(x_1 + \Delta x) = \int_{a}^{x_1 + \Delta x} f(t) dt

นำทั้งสองสมการมาลบกันได้

F(x_1 + \Delta x) - F(x_1) = \int_{a}^{x_1 + \Delta x} f(t) dt - \int_{a}^{x_1} f(t) dt \qquad (1)

เราสามารถแสดงได้ว่า

\int_{a}^{x_1} f(t) dt + \int_{x_1}^{x_1 + \Delta x} f(t) dt = \int_{a}^{x_1 + \Delta x} f(t) dt
(ผลรวมพื้นที่ของบริเวณที่อยู่ติดกัน จะเท่ากับ พื้นที่ของบริเวณทั้งสองรวมกัน)

ย้ายข้างสมการได้

\int_{a}^{x_1 + \Delta x} f(t) dt - \int_{a}^{x_1} f(t) dt = \int_{x_1}^{x_1 + \Delta x} f(t) dt

นำไปแทนค่าใน (1) จะได้

F(x_1 + \Delta x) - F(x_1) = \int_{x_1}^{x_1 + \Delta x} f(t) dt \qquad (2)

ตามทฤษฎีบทค่าเฉลี่ยสำหรับการอินทิเกรต จะมี c อยู่ในช่วง [x1, x1 + Δx] ที่ทำให้

\int_{x_1}^{x_1 + \Delta x} f(t) dt = f(c) \Delta x

แทนค่าลงใน (2) ได้

F(x_1 + \Delta x) - F(x_1) = f(c) \Delta x \,

หารทั้งสองข้างด้วย Δx จะได้

\frac{F(x_1 + \Delta x) - F(x_1)}{\Delta x} = f(c)
สังเกตว่าสมการข้างซ้าย คือ อัตราส่วนเชิงผลต่างของนิวตัน (Newton's difference quotient) ของ F ที่ x1

ใส่ลิมิต Δx → 0 ทั้งสองข้างของสมการ

\lim_{\Delta x \to 0} \frac{F(x_1 + \Delta x) - F(x_1)}{\Delta x} = \lim_{\Delta x \to 0} f(c)

สมการข้างซ้ายจะเป็นอนุพันธ์ของ F ที่ x1

F'(x_1) = \lim_{\Delta x \to 0} f(c) \qquad (3)

เพื่อหาลิมิตของสมการข้างขวา เราจะใช้ทฤษฎีบท squeeze เพราะว่า c อยู่ในช่วง [x1, x1 + Δx] ดังนั้น x1cx1 + Δx

จาก \lim_{\Delta x \to 0} x_1 = x_1 และ \lim_{\Delta x \to 0} x_1 + \Delta x = x_1

ตามทฤษฎีบท squeeze จะได้ว่า

\lim_{\Delta x \to 0} c = x_1

แทนค่าลงใน (3) จะได้

F'(x_1) = \lim_{c \to x_1} f(c)

ฟังก์ชัน f มีความต่อเนื่องที่ c ดังนั้น เราสามารถนำลิมิตแทนในฟังก์ชันได้ ดังนั้น

F'(x_1) = f(x_1) \,

จบการพิสูจน์

(Leithold et al, 1996)

ส่วนที่ 2[แก้]

ต่อไปนี้คือบทพิสูจน์ลิมิตโดย ผลรวมของรีมันน์-ดาบูต์

ภาพแสดงแนวคิดของ ผลรวมรีมันน์-ดาบูต์ ซึ่งใช้ในการประมาณพื้นที่ภายใต้กราฟใด ๆ ด้วยกราฟแท่งจำนวนมาก

ให้ f เป็นฟังก์ชันที่มีความต่อเนื่องบนช่วง [a, b] และ F เป็นปฏิยานุพันธ์ของ f พิจารณานิพจน์ต่อไปนี้

F(b) - F(a)\,

ให้ a = x_0 < x_1 < x_2 < \ldots < x_{n-1} < x_n = b จะได้

F(b) - F(a) = F(x_n) - F(x_0) \,

แล้วบวกและลบด้วยจำนวนเดียวกัน จะได้

\begin{matrix} F(b) - F(a) & = & F(x_n)\,+\,[-F(x_{n-1})\,+\,F(x_{n-1})]\,+\,\ldots\,+\,[-F(x_1) + F(x_1)]\,-\,F(x_0) \, \\
& = & [F(x_n)\,-\,F(x_{n-1})]\,+\,[F(x_{n-1})\,+\,\ldots\,-\,F(x_1)]\,+\,[F(x_1)\,-\,F(x_0)] \, \end{matrix}

เขียนใหม่เป็น

F(b) - F(a) = \sum_{i=1}^n [F(x_i) - F(x_{i-1})] \qquad (1)

เราจะใช้ทฤษฎีบทค่าเฉลี่ย ซึ่งกล่าวว่า

ให้ f เป็นฟังก์ชันที่มีความต่อเนื่องบนช่วง [a, b] และมีอนุพันธ์บนช่วง (a, b) แล้ว จะมี c อยู่ใน (a, b) ที่ทำให้

f'(c) = \frac{f(b) - f(a)}{b - a}

และจะได้

f'(c)(b - a) = f(b) - f(a) \,

ฟังก์ชัน F เป็นฟังก์ชันที่หาอนุพันธ์ได้ในช่วง [a, b] ดังนั้น มันจะหาอนุพันธ์และมีความต่อเนื่องบนแต่ละช่วง xi-1 ได้ ตามทฤษฎีบทค่าเฉลี่ย จะได้

F(x_i) - F(x_{i-1}) = F'(c_i)(x_i - x_{i-1}) \,

แทนค่าลงใน (1) จะได้

F(b) - F(a) = \sum_{i=1}^n [F'(c_i)(x_i - x_{i-1})]

จาก F'(c_i) = f(c_i)\, และ x_i - x_{i-1} สามารถเขียนในรูป \Delta x ของผลแบ่งกั้น i

F(b) - F(a) = \sum_{i=1}^n [f(c_i)(\Delta x_i)] \qquad (2)

สังเกตว่าเรากำลังอธิบายพื้นที่ของสี่เหลี่ยมผืนผ้า โดยมีความกว้างคูณความสูง และเราก็บวกพื้นที่เหล่านั้นเข้าด้วยกันจากทฤษฎีบทค่าเฉลี่ย สี่เหลี่ยมผืนผ้าแต่ละรูปอธิบายค่าประมาณของส่วนของเส้นโค้ง สังเกตอีกว่า \Delta x_i ไม่จำเป็นต้องเหมือนกันในทุกๆค่าของ i หรือหมายความว่าความกว้างของสี่เหลี่ยมนั้นไม่จำเป็นต้องเท่ากัน สิ่งที่เราต้องทำคือประมาณเส้นโค้งด้วยจำนวนสี่เหลี่ยม n รูป เมื่อขนาดของส่วนต่างๆเล็กลง และ n มีค่ามากขึ้น ทำให้เกิดส่วนต่างๆมากขึ้น เพื่อครอบคลุมพื้นที่ เราจะยิ่งเข้าใกล้พื้นที่จริงๆของเส้นโค้ง

โดยการหาลิมิตของนิพจน์นี้เป็นเมื่อค่าเฉลี่ยของส่วนต่างๆนี้ เข้าใกล้ศูนย์ เราจะได้ปริพันธ์แบบรีมันน์ นั่นคือ เราหาลิมิตเมื่อขนาดส่วนที่ใหญ่ที่สุดเข้าใกล้ศูนย์ จะได้ส่วนอื่นๆมีขนาดเล็กลง และจำนวนส่วนเข้าใกล้อนันต์

ดังนั้น เราจะใส่ลิมิตไปทั้งสองข้างของสมการ (2) จะได้

\lim_{\| \Delta \| \to 0} F(b) - F(a) = \lim_{\| \Delta \| \to 0} \sum_{i=1}^n [f(c_i)(\Delta x_i)]\,dx

ทั้ง F(b) และ F(a) ต่างก็ไม่ขึ้นกับ ||Δ|| ดังนั้น ลิมิตของข้างซ้ายจึงเท่ากับ F(b) - F(a)

F(b) - F(a) = \lim_{\| \Delta \| \to 0} \sum_{i=1}^n [f(c_i)(\Delta x_i)]

และนิพจน์ทางขวาของสมการ หมายถึงอินทิกรัลของ f จาก a ไป b ดังนั้น เราจะได้

F(b) - F(a) = \int_{a}^{b} f(x)\,dx

จบการพิสูจน์

ตัวอย่าง[แก้]

ตัวอย่างเช่น ถ้าคุณต้องการคำนวณหา

\int_2^5 x^2\;\mathrm{d}x

ให้ f(x)=x^2 เราจะได้ F(x)=\frac{x^3}{3} เป็นปฏิยานุพันธ์ ดังนั้น

\int_2^5 x^2\;\mathrm{d}x = F(5) - F(2) = {125 \over 3} - {8 \over 3} = {117 \over 3} = 39

ถ้าเราต้องการหา

จะได้ \int_1^3 \frac{dx}{x}=\big[\ln|x|\big]_1^3 =\ln 3-\ln1=\ln 3

นัยทั่วไป[แก้]

เราไม่จำเป็นต้องให้ f ต่อเนื่องตลอดทั้งช่วง ดังนั้นส่วนที่ 1 ของทฤษฎีบทจะกล่าวว่า ถ้า f เป็นฟังก์ชันที่สามารถหาปริพันธ์เลอเบกบนช่วง [a, b] และ x_0 เป็นจำนวนในช่วง [a, b] ซึ่ง f ต่อเนื่องที่ x_0 จะได้

F(x) = \int_a^x f(t)\;\mathrm{d}t

สามารถหาอนุพันธ์ได้สำหรับ x=x_0 และ F(x_0)=f(x_0) เราสามารถคลายเงื่อนไขของ f เพียงแค่ให้สามารถหาปริพันธ์ได้ในตำแหน่งนั้น ในกรณีนั้น เราสามารถสรุปได้ว่าฟังก์ชัน F นั่นสามารถหาอนุพันธ์ได้เกือบทุกที่ และ F'(x)=f(x) จะเกือบทุกที่ บางทีเราเรียกทฤษฎีนี้ว่า ทฤษฎีบทอนุพันธ์ของเลอเบก

ส่วนที่ 2ของทฤษฎีบทนี้เป็นจริงสำหรับทุกฟังก์ชัน f ที่สามารถหาปริพันธ์เลอเบกได้ และมีปฏิยานุพันธ์ F (ไม่ใช่ทุกฟังก์ชันที่หาอนุพันธ์ได้)

ส่วนของทฤษฎีบทของเทย์เลอร์ซึ่งกล่าวถึงพจน์ที่เกิดข้อผิดพลาดเป็นปริพันธ์สามารถมองได้เป็นนัยทั่วไปของทฤษฎีบทมูลฐานของแคลคูลัส

มีทฤษฎีบทหนึ่งสำหรับฟังก์ชันเชิงซ้อน: ให้ U เป็นเซตเปิดใน \mathbb{C} และ f:U\to\mathbb{C} เป็นฟังก์ชันที่มี ปริพันธ์โฮโลมอร์ฟ F ใน U ดังนั้นสำหรับเส้นโค้ง \gamma : [a,b] \to U ปริพันธ์เส้นโค้งจะคำนวณได้จาก

\oint_{\gamma} f(z) \;\mathrm{d}z = F(\gamma(b)) - F(\gamma(a))

ทฤษฎีบทมูลฐานของแคลคูลัสสามารถวางนัยทั่วไปให้กับ ปริพันธ์เส้นโค้งและพื้นผิวในมิติที่สูงกว่าและบนแมนิโฟลด์ได้

อ้างอิง[แก้]

  • Stewart, J. (2003). Fundamental Theorem of Calculus. In Integrals. In Calculus: early transcendentals. Belmont, California: Thomson/Brooks/Cole.
  • Larson, Ron, Bruce H. Edwards, David E. Heyd. Calculus of a single variable. 7th ed. Boston: Houghton Mifflin Company, 2002.
  • Leithold, L. (1996). The calculus 7 of a single variable. 6th ed. New York: HarperCollins College Publishers.