ข้ามไปเนื้อหา

ผลต่างระหว่างรุ่นของ "กระแสไฟฟ้า"

จากวิกิพีเดีย สารานุกรมเสรี
เนื้อหาที่ลบ เนื้อหาที่เพิ่ม
BotKung (คุย | ส่วนร่วม)
เก็บกวาดบทความด้วยบอต
Sorn Prapatsorn (คุย | ส่วนร่วม)
ไม่มีความย่อการแก้ไข
บรรทัด 26: บรรทัด 26:
อนุภาคที่นำพาประจุถูกเรียกว่า [[พาหะของประจุไฟฟ้า]] ใน [[โลหะ]] ตัวนำไฟฟ้า อิเล็กตรอนจากแต่ละอะตอมจะยึดเหนี่ยวอยู่กับอะตอมอย่างหลวม ๆ และพวกมันสามารถเคลื่อนที่ได้อย่างอิสระอยู่ภายในโลหะนั้นภายใต้สภาวะการณ์หนึ่ง อิเล้กตรอนเหล่านี้เรียกว่า [[อิเล็กตรอนนำกระแส]] ({{lang-en|conduction electron}}) พวกมันเป็นพาหะของประจุในโลหะตัวนำนั้น
อนุภาคที่นำพาประจุถูกเรียกว่า [[พาหะของประจุไฟฟ้า]] ใน [[โลหะ]] ตัวนำไฟฟ้า อิเล็กตรอนจากแต่ละอะตอมจะยึดเหนี่ยวอยู่กับอะตอมอย่างหลวม ๆ และพวกมันสามารถเคลื่อนที่ได้อย่างอิสระอยู่ภายในโลหะนั้นภายใต้สภาวะการณ์หนึ่ง อิเล้กตรอนเหล่านี้เรียกว่า [[อิเล็กตรอนนำกระแส]] ({{lang-en|conduction electron}}) พวกมันเป็นพาหะของประจุในโลหะตัวนำนั้น


กระแสไฟฟ้า  (I)  เกิดขึ้นจากการไหลของอิเล็กตรอน   ผ่านวัสดุชนิดหนึ่งนั่นคือการถ่ายโอนประจุไฟฟ้า  อิเล็กตรอนจะเคลื่อนที่ถ้าอยู่ในสนามไฟฟ้า   ซึ่งสร้างความต่างศักย์ไฟฟ้า ระหว่างสองบริเวณเพราะฉะนั้น  ความต่างศักย์ไฟฟ้า  จึงจำเป็นในการทำให้เกิดกระแสไฟฟวงจรไฟฟ้า  เป็นวงจรปิดประกอบด้วยแหล่งกำเนิดกระแสไฟฟ้า และอุปกรณ์อื่นๆ  ที่ยอมให้กระแสไฟฟ้าไหลผ่าน
กระแสไฟฟ้า  (I)  เกิดขึ้นจากการไหลของอิเล็กตรอน   ผ่านวัสดุชนิดหนึ่งนั่นคือการถ่ายโอนประจุไฟฟ้า  อิเล็กตรอนจะเคลื่อนที่ถ้าอยู่ในสนามไฟฟ้า   ซึ่งสร้างความต่างศักย์ไฟฟ้า ระหว่างสองบริเวณเพราะฉะนั้น  ความต่างศักย์ไฟฟ้า  จึงจำเป็นในการทำให้เกิดกระแสไฟฟวงจรไฟฟ้า  เป็นวงจรปิดประกอบด้วยแหล่งกำเนิดกระแสไฟฟ้า และอุปกรณ์อื่นๆ  ที่ยอมให้กระแสไฟฟ้าไหลผ่าน มีหน่วยเป็นคูลอมบ์ (Coulomb) เป็นหน่วยของประจุไฟฟ้าในระบบ เอสไอ มีค่าเท่ากับกับประจุไฟฟ้่า
ซึ่งผ่านจุดใดในตัวนำ ทำให้เกิดกระแสไฟฟ้า 1 แอมแปร์ ไหลผ่านตัวนำนั้นใน 1 วินาที

== แรงเคลื่อนไฟฟ้า == (Electromotive force(e.m.f.) หมายถึงความ ต่างศักย์ไฟฟ้าที่สร้างขึ้น
โดยเซลล์ไฟฟ้าแบตเตอรี่ หรือเครื่องกำเนิดไฟฟ้า ซึ่งเป็นสาเหตูให้เกิดกระแสไฟฟ้า ซึ่งเป็นสาเหตุให้เกิด
กระแสไฟฟ้าในวงจร แหล่งกำเนิดแรงเคลื่อนไฟฟ้ามี 2 ขั้วซึ่งใช้สำหรับต่อกับสายไฟ แรงเคลื่อนไฟฟ้า-
ย้อนกลับ เป้นแรงเคลื่อนไฟฟ้าที่เกิดขึ้นจากอุปกรณ์ที่เป็นส่วนของวงจรนั้น โดยให้แรงเคลื่อนไฟฟ้าตรง
กันข้ามกับแหล่งกำเนิดแรงเคลื่อนไฟฟ้าหนักของวงจร
== ประกายไฟฟ้า ==
== ประกายไฟฟ้า ==
เครื่องกำเนิดไฟฟ้าแรงสูง สร้างประกายไฟฟ้าขึ้น  โดยประกายไฟฟ้าเกิดขึ้นจากโดมตัวใหญ่จะวิ่งเข้าหาทรงกลมอันเล็ก ที่ต่อกับสายดินไว้
เครื่องกำเนิดไฟฟ้าแรงสูง สร้างประกายไฟฟ้าขึ้น  โดยประกายไฟฟ้าเกิดขึ้นจากโดมตัวใหญ่จะวิ่งเข้าหาทรงกลมอันเล็ก ที่ต่อกับสายดินไว้

รุ่นแก้ไขเมื่อ 16:15, 26 มีนาคม 2560

วงจรไฟฟ้าอย่างง่าย โดยที่กระแสถูกแสดงด้วยอักษร i ความสัมพันธ์ระหว่างแรงดันไฟฟ้า (V), ตัวต้านทาน (R), และกระแส (I) คือ V=IR; ความสัมพันธ์นี้เป็นไปตาม กฏของโอห์ม

กระแสไฟฟ้า (อังกฤษ: Electric current) คือการไหลของ ประจุไฟฟ้า ในวงจรไฟฟ้า ประจุนี้มักจะถูกนำพาไป อิเล็กตรอน ที่เคลื่อนที่ในประจุยังสามารถถูกนำพาโดย ไอออน ได้เช่นกันในสาร อิเล็กโทรไลต์ หรือโดยทั้งไอออนและอิเล็กตรอนเช่นใน พลาสมา[1]

กระแสไฟฟ้ามีหน่วยวัด SI เป็น แอมแปร์ ซึ่งเป็นการไหลของประจุไฟฟ้าที่ไหลข้ามพื้นผิวหนึ่งด้วยอัตราหนึ่ง คูลอมบ์ ต่อวินาที กระแสไฟฟ้าสามารถวัดได้โดยใช้ แอมป์มิเตอร์[2]

กระแสไฟฟ้าก่อให้เกิดผลหลายอย่าง เช่นความร้อน (Joule heating) ซึ่งผลิต แสงสว่าง ในหลอดไฟ และยังก่อให้เกิด สนามแม่เหล็ก อีกด้วย ซึ่งถูกนำมาใช้อย่างแพร่หลายใน มอเตอร์, ตัวเหนี่ยวนำ, และเครื่องกำเนิดไฟฟ้า

อนุภาคที่นำพาประจุถูกเรียกว่า พาหะของประจุไฟฟ้า ใน โลหะ ตัวนำไฟฟ้า อิเล็กตรอนจากแต่ละอะตอมจะยึดเหนี่ยวอยู่กับอะตอมอย่างหลวม ๆ และพวกมันสามารถเคลื่อนที่ได้อย่างอิสระอยู่ภายในโลหะนั้นภายใต้สภาวะการณ์หนึ่ง อิเล้กตรอนเหล่านี้เรียกว่า อิเล็กตรอนนำกระแส (อังกฤษ: conduction electron) พวกมันเป็นพาหะของประจุในโลหะตัวนำนั้น

กระแสไฟฟ้า  (I)  เกิดขึ้นจากการไหลของอิเล็กตรอน   ผ่านวัสดุชนิดหนึ่งนั่นคือการถ่ายโอนประจุไฟฟ้า  อิเล็กตรอนจะเคลื่อนที่ถ้าอยู่ในสนามไฟฟ้า   ซึ่งสร้างความต่างศักย์ไฟฟ้า ระหว่างสองบริเวณเพราะฉะนั้น  ความต่างศักย์ไฟฟ้า  จึงจำเป็นในการทำให้เกิดกระแสไฟฟวงจรไฟฟ้า  เป็นวงจรปิดประกอบด้วยแหล่งกำเนิดกระแสไฟฟ้า และอุปกรณ์อื่นๆ  ที่ยอมให้กระแสไฟฟ้าไหลผ่าน มีหน่วยเป็นคูลอมบ์ (Coulomb) เป็นหน่วยของประจุไฟฟ้าในระบบ เอสไอ มีค่าเท่ากับกับประจุไฟฟ้่า

                ซึ่งผ่านจุดใดในตัวนำ  ทำให้เกิดกระแสไฟฟ้า 1 แอมแปร์  ไหลผ่านตัวนำนั้นใน 1 วินาที

== แรงเคลื่อนไฟฟ้า == (Electromotive force(e.m.f.) หมายถึงความ ต่างศักย์ไฟฟ้าที่สร้างขึ้น

                โดยเซลล์ไฟฟ้าแบตเตอรี่  หรือเครื่องกำเนิดไฟฟ้า ซึ่งเป็นสาเหตูให้เกิดกระแสไฟฟ้า  ซึ่งเป็นสาเหตุให้เกิด
                กระแสไฟฟ้าในวงจร แหล่งกำเนิดแรงเคลื่อนไฟฟ้ามี 2 ขั้วซึ่งใช้สำหรับต่อกับสายไฟ  แรงเคลื่อนไฟฟ้า-
                ย้อนกลับ  เป้นแรงเคลื่อนไฟฟ้าที่เกิดขึ้นจากอุปกรณ์ที่เป็นส่วนของวงจรนั้น  โดยให้แรงเคลื่อนไฟฟ้าตรง
                กันข้ามกับแหล่งกำเนิดแรงเคลื่อนไฟฟ้าหนักของวงจร

ประกายไฟฟ้า

เครื่องกำเนิดไฟฟ้าแรงสูง สร้างประกายไฟฟ้าขึ้น  โดยประกายไฟฟ้าเกิดขึ้นจากโดมตัวใหญ่จะวิ่งเข้าหาทรงกลมอันเล็ก ที่ต่อกับสายดินไว้

ประกายไฟฟ้าจะถูกสร้างขึ้น  เมื่อความต่างศักย์ของโดมมากพอที่จะทำให้อากาศโดยรอบเกิดการแตกตัวเป็นอิออน  ทำให้อากาศเปลี่ยนจากฉนวนเป็นตัวนำไฟฟ้า  ปรากฏการณ์นี้เกิดขึ้นเร็วมากประมาณ  1  ใน  1000  วินาที

สภาพการนำไฟฟ้า

ความสามารถในการเคลื่อนที่ของ อิเล็กตรอนในการนำไฟฟ้าจะบอกถึงลักษณะของตัวกลาง

– ตัวนำไฟฟ้า กระแสไฟฟ้าจะเคลื่อนผ่านได้ดี เช่น โลหะ

– ฉนวนไฟฟ้า กระแสไฟฟ้าจะไม่สามารถไหลผ่านได้

– ข้อแตกต่างระหว่าง ตัวนำและฉนวนไฟฟ้าคือจำนวนอิเล็กตรอนอิสระที่ไม่ได้อยู่ภายใต้อิทธิพลของศักย์ไฟฟ้าของนิวเคลียส

สัญลักษณ์

สัญลักษณ์ตามธรรมเนียมปฏิบัติสำหรับกระแสไฟฟ้าคือ ซึ่งมีต้นกำเนิดมาจากวลีภาษาฝรั่งเศสว่า intensité de courant หมายถึงความเข้มของกระแส (อังกฤษ: current intensity)[3][4] ความเข้มของกระแสนี้มักจะหมายถึงง่าย ๆ ว่า กระแส.[5] สัญลักษณ์ ถูกใช้โดย อ็องเดร-มารี อ็องแปร์ หลังจากที่ชื่อของเขาถูกตั้งให้เป็นหน่วยของกระแสไฟฟ้าในการจัดตั้ง กฏแรงของแอมแปร์ ที่ถูกค้นพบในปี 1820.[6] ชื่อเสียงของเขาเดินทางจากฝรั่งเศสไปยังอังกฤษจนกลายเป็นมาตรฐานที่นั่น ทั้ง ๆ ที่มีอย่างน้อยหนึ่งสิ่งพิมพ์ที่ไม่ยอมเปลี่ยนจากการใช้ ไปเป็น จนกระทั่งปี 1896[7]

ธรรมเนียมปฏิบัติ

อิเล็กตรอนซึ่งเป็นพาหะของประจุในวงจรไฟฟ้า (เส้นสีเขียว) จะไหลในทิศทางตรงกันข้ามกับกระแสตามธรรมเนียมปฏิบัติซึ่งไหลจากขั้ว + ไปหาขั้ว - ตามเส้นสีแดง
สัญญลักษณ์ทางอิเล็กทรอนิกส์สำหรับแบตเตอรีในแผนภาพของวงจร (อังกฤษ: circuit diagram)

การไหลของประจุบวกจะทำให้เกิดกระแสไฟฟ้าเหมือนกันและมีผลเช่นเดียวกันกับกระแสที่เกิดจากประจุลบที่ไหลในทิศทางตรงกันข้าม เนื่องจากกระแสไฟฟ้าอาจเกิดจากการไหลของประจุบวกหรือประจุลบ หรือทั้งสองอย่าง ความเข้าใจในทิศทางการไหลของกระแสจึงขึ้นอยู่ว่าประจุชนิดไหนที่ทำให้เกิดกระแส ทิศทางของ'กระแสตามธรรมเนียมปฏิบัติ' (อังกฤษ: conventional current) ถูกกำหนดให้เป็นทิศทางของการไหลของประจุบวก[8]

ในโลหะที่ใช้ทำสายไฟและตัวนำอื่น ๆ ในวงจรไฟฟ้าส่วนใหญ่ นิวเคลียสของอะตอมจะมีประจุบวกที่จะถูกจับเอาไว้ในตำแหน่งที่คงที่ และมีอิเล็กตรอนที่จะมีอิสระที่จะเคลื่อนที่ ที่สามารถนำพาประจุของพวกมันจากที่หนึ่งไปยังอีกที่หนึ่งได้ ในวัสดุอื่น ๆ เช่นสารกึ่งตัวนำ พาหะของประจุสามารถนำพาประจุบวกหรือประจุลบก็ได้ขึ้นอยู่กับสารเจือปน (อังกฤษ: dopant) ที่สารกึ่งตัวนำใช้ พาหะของประจุอาจนำพาทั้งประจุบวกและประจุลบในเวลาเดียวกันก็ได้ เช่นที่เกิดขึ้นใน เซลล์ไฟฟ้าเคมี

การไหลของประจุบวกสามารถให้กระแสไฟฟ้าได้เช่นเดียวกันและให้ผลในวงจรไฟฟ้าเป็นการไหลที่เหมือนกับของประจุลบแต่ในทิศทางตรงกันข้าม เนื่องจากกระแสอาจเป็นการไหลของประจุบวกหรือประจุลบอย่างใดอย่างหนึ่งหรือทั้งสองอย่าง ธรรมเนียมปฏิบัติจึงเป็นสิ่งจำเป็นสำหรับทิศทางของกระแสไฟฟ้าที่ขึ้นอยู่กับชนิดของ พาหะของประจุ ทิศทางของ"กระแสตามธรรมเนียมปฏิบัติ"ได้ถูกกำหนดตามอำเภอใจให้เป็นทิศทางเดียวกันกับการไหลของประจุบวก

ผลที่ตามมาของธรรมเนียมปฏิบัตินี้ก็คือ อิเล็กตรอนซึ่งเป็นพาหะของประจุในลวดโลหะและชิ้นส่วนอื่น ๆ ส่วนใหญ่ของวงจรไฟฟ้า จะไหลในทิศทางตรงข้ามกับ'การไหลของกระแสตามธรรมเนียมปฏิบัติ' (อังกฤษ: conventional current) ในวงจรไฟฟ้า

ทิศทางอ้างอิง

เนื่องจากกระแสในเส้นลวดหรือส่วนประกอบสามารถไหลไปในทิศทางใดก็ได้ เมื่อตัวแปร ถูกกำหนดให้เป็นตัวแทนของกระแส ทิศทางที่เป็นตัวแทนของกระแสบวกจะต้องมีการระบุซึ่งมักจะเป็นลูกศรในวงจรแผนภาพ นี้เรียกว่าทิศทางอ้างอิงของกระแส ถ้ากระแสไหลในทิศทางตรงกันข้าม ตัวแปร จะมีค่าติดลบ

เมื่อทำการวิเคราะห์วงจรไฟฟ้า ทิศทางที่เกิดขึ้นจริงของกระแสที่ไหลผ่านองค์ประกอบของวงจรเฉพาะมักจะไม่เป็นที่รู้จัก ผลที่ตมมาก็คือ ทิศทางอ้างอิงของกระแสมักจะถูกกำหนดตามอำเภอใจ เมื่อวงจรได้รับการแก้ปัญหาแล้ว ค่าลบสำหรับตัวแปรต่าง ๆ จะหมายความว่าทิศทางที่เกิดขึ้นจริงของกระแสผ่านองค์ประกอบวงจรจะเป็นตรงกันข้ามกับทิศทางอ้างอิงที่ถูกกำหนดไว้ก่อน ในวงจรอิเล็กทรอนิกส์ ทิศทางกระแสอ้างอิงมักจะถูกกำหนดให้ทุกจุดมีกระแสไหลลงกราวด์ วิธีนี้มักจะสอดคล้องกับทิศทางชองกระแสที่เกิดขึ้นจริง เพราะในหลายวงจรแรงดันไฟฟ้าจาก แหล่งจ่ายไฟ จะเป็นบวกเมื่อเทียบกับกราวด์

กฎของโอห์ม

ในวงจรไฟฟ้าใด ๆ จะประกอบด้วยส่วนสำคัญ 3 ส่วนคือ แหล่งจ่ายพลังงานไฟฟ้าและตัวต้านทานหรืออุปกรณ์ไฟฟ้าที่จะใส่เข้าไปในวงจรไฟฟ้านั้น ๆ เพราะฉะนั้น ความสำคัญของวงจรที่จะต้องคำนึงถึงเมื่อมีการต่อวงจรไฟฟ้าใดๆก็คือทำอย่างไรจึงจะไม่ให้กระแสไฟฟ้าไหลผ่านเข้าไปในวงจรมากเกินไปซึ่งจะทำให้อุปกรณ์ไฟฟ้าชำรุดเสียหายหรือวงจรไหม้เสียหายได้ ้ นายยอร์จ ซีมอน โอห์ม นักฟิสิกส์ชาวเยอรมันได้ให้ความสำคัญของวงจรไฟฟ้าตามสมการ

เมื่อ I เป็นกระแสไฟฟ้า มีหน่วยเป็นแอมแปร์, V คือค่าความต่างศักย์มีหน่วยของโวลต์และ R คือความต้านทานของตัวนำมีหน่วยเป็นโอห์ม

DC และ AC

กระแสแบ่งออกเป็นกระแสตรง (อังกฤษ: Direct Current) และกระแสสลับ (อังกฤษ: Alternating Current)

กระแสตรง

แสดงความแตกต่างของกระแสตรงกับกระแสสลับ โดยให้แนวตั้งเป็นปริมาณกระแส แนวนอนเป็นเวลา ถ้าเป็นกระแสตรง เมื่อเวลาผ่านไป กระแสไม่เปลี่ยนทิศ แต่กระแสสลับ บางครั้งก็เป็นบวก บางครั้งก็เป็นลบ แสดงว่ากระแสมีการเปลี่ยนทิศทาง

กระแสตรง (DC) คือการไหลทิศทางเดียวของประจุไฟฟ้า กระแสตรงเกิดจากแหล่งที่มาเช่นแบตเตอรี่, เทอร์โมคัปเปิล, เซลล์แสงอาทิตย์และเครื่องกำเนิดไฟฟ้ากระแสตรงอื่นๆ กระแสตรงอาจไหลในตัวนำเช่นลวด แต่ยังสามารถไหลผ่านเซมิคอนดักเตอร์, ฉนวนหรือแม้กระทั่งผ่านสุญญากาศเช่นในลำแสงไอออน ประจุไฟฟ้าไหลในทิศทางที่คงที่แตกต่างไปจากกระแสสลับ (AC) กระแสตรงแทบไม่มีอันตราย ส่วนใหญ่ใช้ในอุปกรณ์อิเล็คโทรนิคส์ขนาดเล็ก ใช้กระแสต่ำ สามารถผลิตได้จากการนำกระแสสลับมาเปลี่ยนเป็นกระแสตรง เช่นที่ชาร์จโทรศัพท์มือถือ

กระแสสลับ

ในกระแสสลับ (AC หรือ ac), เป็นกระแสไฟฟ้าที่มีทิศทางการไหลของกระแสไฟฟ้ากลับไป-กลับมาอย่างรวดเร็ว เช่นไฟฟ้าที่ใช้ตามบ้านหรืออาคารทั่วไป รูปร่างเป็น sine wave ในบางอย่างอาจเป็นรูปสามเหลี่ยมหรือรูปสี่เหลี่ยม ส่วนใหญ่มีกระแสสูง อันตรายมาก สามารถผลิตจากไฟ DC ได้ แต่ในขนาดเล็ก เช่นเปลี่ยนจากไฟเซลล์แสงอาทิตย์มาเป็น AC เพื่อให้แสงสว่างหรือเปิดทีวีในพื้นที่ห่างไกล

แม่เหล็กไฟฟ้า

ตามกฎของแอมแปร์, กระแสไฟฟ้าสามารถผลิตสนามแม่เหล็กได้ เมื่อมีกระแสไหลในเส้นลวด จะเกิดสนามแม่เหล็กที่แสดงให้เห็นเป็นรูปวงกลมรอบเส้นลวด

ตามรูป กระแสไฟฟ้าสามารถสร้างสนามแม่เหล็กได้ ในทางกลับกัน ถ้าสนามแม่เหล็กถูกรบกวน ก็สามารถสร้างกระแสไฟฟ้าบนเส้นลวดได้เช่นเดียวกัน

กระแสไฟฟ้าสามารถวัดได้โดยตรงด้วยกัลวาโนมิเตอร์ แต่จะต้องตัดวงจรแล้วแทรกมิเตอร์เข้าไปเป็นส่วนหนึ่งของวงจร ซึ่งไม่สะดวกในการปฏิบัติ ปัจจุบันสามารถวัดได้โดยไม่ต้องตัดวงจรโดยการตรวจสอบสนามแม่เหล็กที่เกิดจากกระแสไฟฟ้า อุปกรณ์ที่ใช้สำหรับการนี้รวมถึงเซ็นเซอร์แบบฮอลล์เอฟเฟค หรือใช้ที่หนีบ (current clamp) หรือใช้หม้อแปลงกระแส หรือใช้ขดลวดของ Rogowski


นิยามของกระแสไฟฟ้า

กระแสไฟฟ้าคือ ปริมาณประจุไฟฟ้าที่เลื่อนไหลในวงจรไฟฟ้าต่อหน่วยวินาที เรียกว่า ปริมาณกระแสไฟฟ้าไหล แอมแปร์ คือประจุไฟฟ้า 1 คูลอมบ์ เคลื่อนที่ผ่านพื้นที่หน้าตัดของขดลวดในเวลา 1 วินาที และหน่วยของกระแสไฟฟ้าเป็นแอมแปร์ เพื่อให้เป็นเกียรติแก่ อองเดร เอ็ม.แอมแปร์ (Andre Marie Ampere) นักฟิสิกส์ชาวฝรั่งเศส

ความสัมพันธ์ระหว่างกระแสไฟฟ้า กับประจุไฟฟ้า

สัญลักษณ์ที่ใช้แทนปริมาณกระแสไฟฟ้า (ปริมาณประจุไฟฟ้า Q ที่ไหลต่อหน่วยเวลา T) คือ I ปริมาณกระแสไฟฟ้าที่ผ่านพื้นที่ภาคตัดขวางใดๆ (เช่น ภาคตัดขวางในลวดทองแดง) นิยามจาก ปริมาณประจุไฟฟ้าที่ผ่านพื้นที่ผิวในหน่วยเวลา[9]

โดยที่เป็นปริมาณประจุที่ผ่านพื้นที่ผิวหนึ่งในช่วงเวลาในสมการข้างบนเป็นค่ากระแสไฟฟ้าเฉลี่ยถ้าเวลาเข้าใกล้ศูนย์ สามารถเขียนความสัมพันธ์อีกแบบในรูปกระแสไฟฟ้าขณะใดขณะหนึ่ง (instantaneous current)

หรือผันกลับได้

หน่วยของกระแสไฟฟ้าในระบบ SI คือ แอมแปร์ (ampere, A)

ดูเพิ่ม

อ้างอิง

  1. Anthony C. Fischer-Cripps (2004). The electronics companion. CRC Press. p. 13. ISBN 978-0-7503-1012-3.
  2. Lakatos, John (March 1998). "Learn Physics Today!". Lima, Peru: Colegio Dr. Franklin D. Roosevelt. สืบค้นเมื่อ 2009-03-10. {{cite web}}: ไม่รู้จักพารามิเตอร์ |coauthors= ถูกละเว้น แนะนำ (|author=) (help)
  3. T. L. Lowe, John Rounce, Calculations for A-level Physics, p. 2, Nelson Thornes, 2002 ISBN 0-7487-6748-7.
  4. Howard M. Berlin, Frank C. Getz, Principles of Electronic Instrumentation and Measurement, p. 37, Merrill Pub. Co., 1988 ISBN 0-675-20449-6.
  5. K. S. Suresh Kumar, Electric Circuit Analysis, Pearson Education India, 2013, ISBN 9332514100, section 1.2.3 "'Current intensity' is usually referred to as 'current' itself."
  6. A-M Ampère, Recuil d'Observations Électro-dynamiques, p. 56, Paris: Chez Crochard Libraire 1822 (in French).
  7. Electric Power, vol. 6, p. 411, 1894.
  8. [1], กระแสไฟฟ้าในตัวนำ ม.เกษตร
  9. [2], กระแสไฟฟ้า ม.สุรนารี

http://board.postjung.com/686252.html http://www.elecnet.chandra.ac.th/courses/ELTC1201/electricbasic/ohm.htm