เครือข่ายไฟฟ้า

จากวิกิพีเดีย สารานุกรมเสรี
วงจรไฟฟ้าอย่างง่ายประกอบไปด้วยแหล่งจ่ายไฟและตัวต้านทาน ในวงจรนี้จะเห็นว่า ตาม กฏของโอห์ม และมีกระแสไหลครบวงจร ถ้าต่อเฉพาะอุปกรณ์ใดๆ เข้าด้วยกันโดยไม่ครบวงจรเรียกว่าเครือข่ายไฟฟ้า

ข่ายวงจรไฟฟ้า โครงข่ายไฟฟ้า (อังกฤษ: Electrical Network) หมายถึง การเชื่อมต่อเข้าด้วยกันของอุปกรณ์ไฟฟ้าต่างๆ เช่น ตัวต้านทาน ตัวเหนี่ยวนำ ตัวเก็บประจุ แหล่งจ่ายแรงดันไฟฟ้า แหล่งจ่ายกระแส สวิตช์ แต่ วงจรไฟฟ้า เป็นเครือข่ายที่มีเส้นทางไหลกลับ (อังกฤษ: return path) สำหรับกระแสไหลได้ครบวงจร เครือข่ายไฟฟ้าเชิงเส้น, วงจรไฟฟ้าพิเศษชนิดหนึ่งที่ประกอบด้วยแหล่งจ่าย (แรงดันหรือกระแส), อุปกรณ์เชิงเส้นเป็นกลุ่ม (ตัวต้านทาน, ตัวเหนี่ยวนำ, ตัวเก็บประจุหลายตัว) และอุปกรณ์เชิงเส้นที่กระจายกันอยู่ (สายส่ง) เหล่านี้มีคุณสมบัติที่สัญญาณต่าง ๆ สามารถทับซ้อนกันได้เป็นเส้นต่อเนื่อง เครือข่ายเหล่านี้จึงง่ายต่อการวิเคราะห์โดยใช้วิธีการของโดเมนความถี่ที่มีประสิทธิภาพ เช่นการแปลงของลาปลาซ เพื่อตรวจสอบการตอบสนองกับ DC, การตอบสนองกับ AC และการตอบสนองของสัญญาณที่เกิดระยะสั้น

วงจรตัวต้านทาน เป็นวงจรที่มีแต่ตัวต้านทานและแหล่งจ่ายกระแสและแรงดันในอุดมคติเท่านั้น การวิเคราะห์วงจรตัวต้านทานมีความซับซ้อนน้อยกว่าการวิเคราะห์วงจรที่ประกอบด้วยตัวเก็บประจุและตัวเหนี่ยวนำ ถ้าแหล่งจ่ายไฟเป็นแหล่งจ่ายกระแสตรง(DC) ที่คงที่ วงจรนั้นเรียกว่าวงจร DC

เครือข่ายที่ประกอบด้วยชิ้นส่วนอิเล็กทรอนิกส์ที่แอคทีฟ (หลอดสูญญากาศ, ทรานซิสเตอร์, วงจรรวม) เรียกว่า วงจรอิเล็กทรอนิกส์ เครือข่ายดังกล่าวโดยทั่วไปมักจะไม่เป็นเชิงเส้น และต้องมีการออกแบบและเครื่องมือในการวิเคราะห์ที่ซับซ้อนมากกว่า

การจัดหมวดหมู่[แก้]

โดยความเป็นพาสซีฟ[แก้]

เครือข่ายแอคทีฟเป็นเครือข่ายหนึ่งที่ประกอบด้วยแหล่งจ่ายที่แอคทีพเช่น แหล่งจ่ายแรงดันหรือแหล่งจ่ายกระแส

เครือข่ายพาสซีฟเป็นเครือข่ายที่ไม่มีแหล่งจ่ายที่แอคทีฟใดๆ มีแต่อุปกรณ์พาสซีฟ

โดยความเป็นเชิงเส้น[แก้]

เครือข่ายเชิงเส้นหมายถึงเครือข่ายที่ค่าพารามิเตอร์ของตัวต้านทาน, ตัวเหนี่ยวนำ และตัวเก็บประจุมีค่าคงที่เมื่อเทียบกับกระแสหรือแรงดัน และแรงดันหรือกระแสของแหล่งจ่ายไม่ขึ้นอยู่กับหรือเป็นสัดส่วนโดยตรงกับแรงดันและกระแสอื่นหรืออนุพันธ์อื่นของมันในเครือข่าย เครือข่ายเชิงเส้นจะประกอบด้วยแหล่งจ่ายที่เป็นอิสระ, แหล่งจ่ายไม่อิสระแต่เป็นเชิงเส้น และอุปกรณ์ที่เป็นพาสซีฟเชิงเส้นทั้งหมด สัญญาณของมันสร้างออกมาเป็นไปตามลำดับก่อนหลัง

การจำแนกประเภทของแหล่งจ่าย[แก้]

แหล่งจ่ายสามารถแบ่งเป็น แหล่งจ่ายอิสระและแหล่งจ่ายไม่อิสระ

แหล่งจ่ายอิสระ[แก้]

แหล่งจ่ายอิสระในอุดมคติจะรักษาระดับแรงดันหรือกระแสไว้เท่าเดิม โดยไม่คำนึงถึงองค์ประกอบอื่นๆในวงจร ระดับของแรงดันหรือกระแสเป็นได้ทั้ง คงที่(DC) หรือ ซายน์ (AC) ความแข็งแรงของแรงดันไฟฟ้าหรือกระแส จะไม่เปลี่ยนแปลงตามการเปลี่ยนแปลงของโหลดใด ๆ

แหล่งจ่ายไม่อิสระ[แก้]

แหล่งจ่ายไม่อิสระจะขึ้นอยู่กับองค์ประกอบเฉพาะของวงจรสำหรับการส่งมอบกำลังไฟฟ้าหรือ แรงดันไฟฟ้า หรือกระแส ขึ้นอยู่กับชนิดของแหล่งมันเป็น

กฎของไฟฟ้า[แก้]

กฎของไฟฟ้ามีเป็นจำนวนมากที่นำไปใช้กับทุกวงจรไฟฟ้า ได้แก่ :

  • กฎกระแสของ Kirchhoff : ผลรวมของกระแสทั้งหมดที่เข้าโหนดจะมีค่าเท่ากับผลรวมของ กระแสทั้งหมดที่ออกจากโหนด
  • กฎแรงดันไฟฟ้าของ Kirchhoff : ผลรวมโดยตรงของความต่างศักย์ไฟฟ้ารอบวงจรต้องเป็นศูนย์
  • กฎของโอห์ม : แรงดันตกคร่อมตัวต้านทานจะมีค่าเท่ากับผลคูณของความต้านทานและกระแสที่ไหลผ่านตัวมัน
  • ทฤษฎีบทของนอร์ตัน : วงจรของแหล่งจ่ายแรงดันไฟฟ้าหรือแหล่งจ่ายกระแสและตัวต้านทาน ใดๆมีความหมายทางไฟฟ้าเทียบเท่ากับแหล่งจ่ายกระแสหนึ่งแหล่งต่อแบบคู่ขนานกับตัวต้านทานตัวเดียว
  • ทฤษฎีบทของเทเวนิน : วงจรของแหล่งจ่ายแรงดันไฟฟ้าหรือแหล่งจ่ายกระแสและตัวต้านทานใดๆมีความหมายทางไฟฟ้าเทียบเท่ากับแหล่งจ่ายแรงดันไฟฟ้าหนึ่งแหล่งต่อซีรีส์กับความต้านทานตัวเดียว
  • ทฤษฎีบทการทับซ้อน : ในวงจรเชิงเส้นที่มีแหล่งจ่ายอิสระหลายแหล่ง การตอบสนองต่อสาขาใดสาขาหนึ่ง, เมื่อแหล่งจ่ายทั้งหมดทำหน้าที่พร้อมกัน, จะมีค่าเท่ากับผลรวมเชิงเส้นของแต่ละการตอบสนองนั้น การคำนวณได้จากการพูดคุยของแหล่งจ่ายอิสระทีละแหล่ง

วิธีการออกแบบ[แก้]

การวิเคราะห์วงจรเชิงเส้น
องค์ประกอบไฟฟ้า

ResistanceCapacitor button.svgInductor button.svgReactanceImpedanceVoltage button.svg
ConductanceElastance button.svgBlank button.svgSusceptance button.svgAdmittance button.svgCurrent button.svg

อุปกรณ์ไฟฟ้า

Resistor button.svg Capacitor button.svg Inductor button.svg Ohm's law button.svg

วงจรอนุกรมและขนาน

Series resistor button.svgParallel resistor button.svgSeries capacitor button.svgParallel capacitor button.svgSeries inductor button.svgParallel inductor button.svg

Impedance transforms

Y-Δ transform Δ-Y transform star-polygon transforms Dual button.svg

Generator theorems Network theorems

Thevenin button.svgNorton button.svgMillman button.svg

KCL button.svgKVL button.svgTellegen button.svg

Network analysis methods

KCL button.svg KVL button.svg Superposition button.svg

Two-port parameters

z-parametersy-parametersh-parametersg-parametersAbcd-parameter button.svgS-parameters


การออกแบบวงจรไฟฟ้าใดๆ ทั้งอนาล็อกหรือดิจิตอล, วิศวกรไฟฟ้าจะต้องสามารถที่จะทำนาย แรงดันไฟฟ้าและกระแสที่ทุกสถานที่ภายในวงจร วงจรเชิงเส้นเป็นวงจรที่มีความถี่ที่อินพุทเท่ากับความถี่ที่เอาต์พุต สามารถวิเคราะห์ได้ด้วยมือโดยใช้ทฤษฎีจำนวนซับซ้อน วงจรอื่นๆจะสามารถวิเคราะห์ด้วยโปรแกรมซอฟต์แวร์พิเศษหรือเทคนิคการประมาณค่าเช่นรูปแบบ piecewise-linear เท่านั้น

ซอฟต์แวร์การจำลองวงจร เช่น HSPICE และภาษาเช่น VHDL-AMS และ Verilog-AMS ช่วยให้วิศวกรสามารถออกแบบวงจรโดยไม่ต้องเสียค่าใช้จ่าย เวลา และความเสี่ยงของความผิดพลาดที่เกี่ยวข้องในการสร้างต้นแบบวงจร

  • ดูเพิ่มเติม Network analysis (electrical circuits).

กฎที่ซับซ้อนมากขึ้นอื่นๆอาจจำเป็นถ้าวงจรประกอบด้วยอุปกรณ์ที่ไม่เป็นเชิงเส้นหรืออุปกรณ์ปฏิกิริยา ระบบ heterodyning ปฏิรูปด้วยตนเองที่ไม่ใช่เชิงเส้นสามารถจะประมาณได้ การประยุกต์ใช้กฎเหล่านี้ให้ผลลัพธ์ในชุดของสมการที่จะสามารถแก้ไขได้ทั้งพีชคณิตหรือตัวเลขไปพร้อมกัน

ซอฟต์แวร์การจำลองวงจร[แก้]

วงจรที่ซับซ้อนมากสามารถวิเคราะห์เป็นตัวเลขด้วยซอฟต์แวร์เช่น SPICE หรือ GNUCAP หรือ แบบสัญลักษณ์โดยการใช้ซอฟต์แวร์ เช่น SapWin

Linearization รอบจุดปฏิบัติการ[แก้]

เมื่อต้องเผชิญกับวงจรใหม่, สิ่งแรก ซอฟแวร์จะพยายามที่จะหาคำตอบของสภาวะที่มั่นคง นั่นคือ อันที่ทำให้โหนดทั้งหมดเป็นไปตามกฎของกระแสและแรงดันไฟฟ้าตกคร่อมของ Kirchhoff และผ่านแต่ละองค์ประกอบของวงจรที่สอดคล้องกับสมการแรงดัน/กระแสที่ควบคุมองค์ประกอบนั้น

เมื่อสามารถหาคำตอบของสภาวะที่มั่นคงได้แล้ว ก็จะสามารถหาจุดปฏิบัติการของแต่ละองค์ประกอบในวงจรพบด้วย สำหรับการวิเคราะห์สัญญาณขนาดเล็ก ทุกองค์ประกอบที่ไม่ใช่เชิงเส้น สามารถทำเป็นเชิงเส้นรอบจุดการดำเนินงานเพื่อการประมาณการของสัญญาณขนาดเล็กของแรงดันไฟฟ้าและกระแส นี่คือการประยุกต์ใช้กฎของโอห์ม เมทริกซ์วงจรเชิงเส้นที่ได้รับจะ สามารถแก้ปัญหาได้ด้วยการกำจัดแบบเกาส์

การประมาณการแบบ Piecewise-linear[แก้]

ซอฟต์แวร์เช่น PLECS อินเตอร์เฟซกับ Simulink จะใช้การประมาณแบบ Piecewise-linear ของสมการที่ควบคุมองค์ประกอบของวงจร วงจรจะถูกถือว่าเป็นเครือข่ายเชิงเส้นอย่างสมบูรณ์ของไดโอดในอุดมคติ ทุกครั้งที่ไดโอดสวิทช์จากเปิดเป็นปิดหรือในทางกลับกัน คอนฟิกของเครือข่ายเชิงเส้นจะเปลี่ยน การเพิ่มรายละเอียดมากขึ้นในการประมาณของสมการจะไปเพิ่ม ความถูกต้องของการจำลอง แต่ก็เพิ่มเวลาการทำงานของมันด้วย

ดูเพิ่ม[แก้]

  • Bridge circuit
  • Digital circuit
  • Circuit diagram
  • Circuit theory
  • Diode bridge
  • Quiescent current
  • กราวด์ (ไฟฟ้า)
  • Hydraulic analogy
  • Impedance
  • Load
  • Mathematical methods in electronics
  • เมมริสเตอร์
  • Netlist
  • Network analyzer (electrical)
  • Network analyzer (AC power)
  • Open-circuit voltage
  • LC circuit
  • RC circuit
  • RL circuit
  • RLC circuit
  • Lumped element model and distributed element model
  • Potential divider
  • Prototype filter
  • Schematic
  • Series and parallel circuits
  • Short circuit
  • Superposition theorem
  • Topology (electronics)
  • Continuity test
  • Voltage drop
  • Mesh analysis