ระบบนิเวศ
ระบบนิเวศ คือกลุ่มอินทรีย์ (พืช สัตว์และจุลินทรีย์) ร่วมกับองค์ประกอบอชีวนะของสิ่งแวดล้อมของพวกมัน (เช่น อากาศ น้ำและดินอนินทรีย์) ซึ่งมีปฏิสัมพันธ์กันเป็นระบบ[1] ถือว่า ส่วนประกอบชีวนะและอชีวนะเชื่อมกันผ่านวัฏจักรสารอาหารและการถ่ายทอดพลังงาน[2] ระบบนิเวศนิยามเป็นเครือข่ายปฏิสัมพันธ์ระหว่างอินทรีย์ด้วยกันและระหว่างอินทรีย์กับสิ่งแวดล้อม[3] ระบบนิเวศมีขนาดเท่าใดก็ได้ แต่ปกติครอบคลุมพื้นที่เฉพาะจำกัด[4] แม้นักวิทยาศาสตร์บางส่วนกล่าวว่า ทั้งโลกก็เป็นระบบนิเวศหนึ่งด้วย[5]
พลังงาน น้ำ ไนโตรเจน และดินอนินทรีย์เป็นอีกส่วนประกอบอชีวนะของระบบนิเวศ พลังงานซึ่งถ่ายทอดผ่านระบบนิเวศได้มาจากดวงอาทิตย์เป็นหลัก โดยทั่วไปเข้าสู่ระบบผ่านการสังเคราะห์ด้วยแสง ซึ่งกระบวนการนี้ยังจับคาร์บอนจากบรรยากาศด้วย สัตว์มีบทบาทสำคัญในการเคลื่อนของสสารและพลังงานผ่านระบบนิเวศ โดยการกินพืชและสัตว์อื่น นอกจากนี้ สัตว์ยังมีอิทธิพลต่อปริมาณพืชและชีวมวลจุลินทรีย์ที่มีอยู่ ตัวสลายสารอินทรีย์ปลดปล่อยคาร์บอนกลับสู่บรรยากาศและเอื้อการเกิดวัฏจักรสารอาหารโดยการแปลงสารอาหารที่สะสมอยู่ในชีวมวลตายกลับสู่รูปที่พร้อมถูกพืชและจุลินทรีย์อื่นใช้ โดยการย่อยสลายสารอินทรีย์ตาย[6] ในธรรมชาติแล้วมีสาร 60 ชนิด ในจำนวน 96 ชนิด หมุนเวียนผ่านเข้าไปในอินทรีย์[7]
ระบบนิเวศมีทั้งปัจจัยภายนอกและภายในควบคุม ปัจจัยภายนอก เช่น ภูมิอากาศ วัสดุกำเนิด (parent material) ซึ่งสร้างดินและภูมิลักษณ์ ควบคุมโครงสร้างโดยรวมของระบบนิเวศและวิธีที่สิ่งต่าง ๆ เกิดในนั้น แต่ปัจจัยดังกล่าวไม่ได้รับอิทธิพลจากระบบนิเวศ ปัจจัยภายนอกอื่นรวมเวลาและชีวชาติศักยะ (potential biota) ระบบนิเวศเป็นสิ่งพลวัต คือ อยู่ภายใต้การรบกวนเป็นระยะและอยู่ในกระบวนการฟื้นตัวจากการรบกวนในอดีตบางอย่าง ระบบนิเวศในสิ่งแวดล้อมคล้ายกันที่ตั้งอยู่ในส่วนของโลกต่างกันสามารถมีลักษณะต่างกันมากเพราะมีชนิดต่างกัน การนำชนิดต่างถิ่นเข้ามาสามารถทำให้เกิดการเลื่อนอย่างสำคัญในการทำหน้าที่ของระบบนิเวศ ปัจจัยภายในไม่เพียงควบคุมกระบวนการของระบบนิเวศ แต่ยังถูกระบบนิเวศควบคุมและมักอยู่ภายใต้วงวนป้อนกลับ (feedback loop) เช่นกัน ขณะที่ทรัพยากรป้อนเข้าปกติถูกกระบวนการภายนอก เช่น ภูมิอากาศและวัสดุกำเนิด ควบคุม แต่การมีทรัพยากรเหล่านี้ในระบบนิเวศก็ถูกปัจจัยภายใน เช่น การผุสลายตัว การแข่งขันราก หรือการเกิดร่มควบคุม ปัจจัยภายในอื่นเช่น การรบกวน การสืบทอด (succession) และประเภทของชนิดที่มี รวมทั้งมนุษย์ที่อยู่ภายในและก่อให้เกิดผลในระบบนิเวศ แต่ผลลัพธ์รวมใหญ่พอที่จะมีอิทธิพลต่อปัจจัยภายนอกอย่างภูมิอากาศ[8]
ความหลากหลายทางชีวภาพ (biodiversity) เช่นเดียวกับการรบกวนและการสืบทอด มีผลต่อการทำหน้าที่ของระบบนิเวศ ระบบนิเวศให้ผลิตผลและการจัดการต่าง ๆ ที่มนุษย์ต้องการ หลักการการจัดการระบบนิเวศเสนอว่า แทนที่จะจัดการชนิดหนึ่งเพียงชนิดเดียว ควรจัดการทรัพยากรธรรมชาติที่ระดับระบบนิเวศด้วย การจำแนกระบบนิเวศเป็นหน่วยเอกพันธุ์ทางระบบนิเวศ (ecologically homogeneous unit) เป็นขั้นตอนสำคัญสู่การจัดการระบบนิเวศอย่างสัมฤทธิ์ผล แต่ไม่มีวิธีทำวิธีใดวิธีหนึ่งที่ตกลงกัน
กระบวนการระบบนิเวศ
[แก้]การถ่ายทอดพลังงาน
[แก้]คาร์บอนและพลังงานซึ่งรวมอยู่ในเนื้อเยื่อพืช (การผลิตปฐมภูมิสุทธิ) ถูกสัตว์บริโภคขณะพืชยังมีชีวิต หรือยังไม่ถูกกินเมื่อเนื้อเยื่อพืชตายและกลายเป็นซากสลาย ในระบบนิเวศบนดิน การผลิตปฐมภูมิสุทธิราว 90% ถูกตัวสลายสารอินทรีย์ย่อยสลาย ส่วนที่เหลือไม่ถูกสัตว์บริโภคขณะยังมีชีวิตแล้วเข้าสู่ระบบโภชนาการที่มีพืชเป็นฐาน ก็ถูกบริโภคหลังตายแล้วแล้วเข้าระบบโภชนาการที่มีซากสลายเป็นฐาน ในระบบในน้ำ สัดส่วนชีวมวลพืชที่ถูกสัตว์กินพืชบริโภคมีสูงกว่ามาก ในระบบโภชนาการ อินทรีย์สังเคราะห์ด้วยแสงเป็นผู้ผลิตปฐมภูมิ อินทรีย์ที่บริโภคเนื้อเยื่อของผู้ผลิตปฐมภูมิ เรียก ผู้บริโภคปฐมภูมิ ผู้บริโภคลำดับที่หนึ่ง หรือผู้ผลิตทุติยภูมิ คือ สัตว์กินพืช สัตว์ที่กินผู้บริโภคปฐมภูมิ คือ สัตว์กินเนื้อ เป็นผู้บริโภคทุติยภูมิหรือผู้บริโภคลำดับที่สอง ผู้ผลิตและผู้บริโภคเหล่านี้ประกอบเป็นระดับโภชนาการตามลำดับการบริโภค ตั้งแต่พืช ถึงสัตว์กินพืช และสัตว์กินเนื้อ ก่อเป็นโซ่อาหาร ระบบจริงซับซ้อนกว่านี้มาก โดยทั่วไปอินทรีย์จะกินอาหารมากกว่าหนึ่งรูป และอาจกินที่ระดับโภชนาการมากกว่าหนึ่งระดับ สัตว์กินเนื้ออาจจับเหยื่อบางส่วนซึ่งเป็นส่วนหนึ่งของระบบโภชนาการที่มีพืชเป็นฐาน และบางส่วนซึ่งเป็นส่วนหนึ่งของระบบโภชนาการที่มีซากสลายเป็นฐาน เช่น นกกินทั้งตั๊กแตนซึ่งเป็นสัตว์กินพืช และไส้เดือนดินซึ่งบริโภคซากสลาย ระบบจริงที่มีบรรดาความซับซ้อนเหล่านี้ ก่อสายใยอาหารแทนโซ่อาหาร
การผุสลายตัว
[แก้]คาร์บอนและสารอาหารที่อยู่ในสารอินทรีย์ที่ตายแล้วจะโดนแบ่งกลุ่มด้วยกระบวนการที่เรียกว่าการสลายตัว สารอาหารที่ได้จากการสลายตัวนั้นสามารถนำกลับมาใช้ได้สำหรับพืชและจุลินทรีย์และอีกส่วนหนึ่งจะกลายเป็นคาร์บอนไดออกไซด์กลับสู่ชั้นบรรยากาศเพื่อใช้ในการสังเคราะห์แสง หากไม่มีการสลายตัวจะมีสารอินทรีย์ที่ตายแล้วและการสะสมสารอาหารอยู่ในระบบและแก๊สคาร์บอนไดออกไซด์ในบรรยากาศก็จะหมดไป[10] ประมาณ 90 % ของอัตราการผลิตปฐมภูมิสุทธิ (Net Primary Productivity : NPP) จะมาจากผู้ย่อยสลายโดยตรง
กระบวนการย่อยสลายสามารถแบ่งออกเป็น 3 ประเภท
- การกระจายตัวและการเปลี่ยนแปลงทางเคมีของวัตถุที่ตายแล้วเมื่อมีน้ำไหลผ่านสารอินทรีย์ที่ตายแล้ว มันจะละลายและกลายเป็นองค์ประกอบของน้ำซึ่งถูกใช้โดยสิ่งมีชีวิตที่อยู่ในดิน หรือสิ่งที่อยู่นอกเหนือจากสิ่งที่มีในระบบนิเวศ[10] ใบไม้ที่เพิ่งผลัดใบและสัตว์ที่เพิ่งตายเป็นส่วนที่ทำให้ความเข้มข้นของน้ำเพิ่มมากขึ้นและรวมถึงน้ำตาล กรดอะมิโน และแร่ธาตุ การชะล้างที่สำคัญจะเกิดขึ้นในสภาพแวดล้อมที่เปียกและความสำคัญจะลดลงเมื่อแพร่ผ่านที่แห้งแล้ง[10]
- กระบวนการการแยกชิ้นส่วนโดยการทำให้อินทรีย์วัตถุแตกแล้วกลายเป็นชิ้นส่วนเล็ก ๆ ทำให้เป็นบริเวณที่จุลินทรีย์กระจายตัว แต่สำหรับใบไม้สดจุลินทรีย์ไม่สามารถเข้าถึงได้เนื่องจากผิวหรือเปลือกไม้และองค์ประกอบเซลล์จะถูกปกป้องไว้ด้วยผนังเซลล์ สำหรับสัตว์ที่เพิ่งตายจะโดนครอบคลุมด้วยโครงกระดูกแข็ง โดยกระบวนการแยกนี้หากชิ้นส่วนที่แตกสามารถผ่านชั้นที่มีการปกป้องนี้ได้ก็จะสามารถช่วยเร่งการย่อยสลายของจุลินทรีย์ได้ดีขึ้น[10] การล่าซากชิ้นส่วนของสัตว์ก็เพื่อนำไปเป็นอาหารเพื่อการดำรงชีพ ซึ่งเปรียบเสมือนเป็นวงจรที่ใช้ทดสอบความคงตัวและวงจรของชิ้นส่วนวัตถุที่ตายแล้วในสภาพแวดล้อมที่เปียกและแห้ง[10]
- การเปลี่ยนแปลงทางเคมีของสารอินทรีย์ที่ตายส่วนใหญ่จะได้จากแบคทีเรียและการกระทำของเชื้อราเป็นหลัก โดยเส้นใยราจะสร้างเอนไซม์ซึ่งสามารถแทรกผ่านโครงสร้างภายนอกของวัตถุอินทรีย์ของพืชที่ตายแล้วได้ อีกทั้งผลิตเอนไซม์เพื่อสลายลิกนินซึ่งช่วยให้มันสามารถผ่านไปยังทั้งภายในเซลล์และไปยังไนโตรเจนที่อยู่ในลิกนิน เชื้อราสามารถแลกเปลี่ยนคาร์บอนและไนโตรเจนผ่านเส้นใยที่มีโครงสร้างเป็นร่างแหดังนั้นจึงแตกต่างจากแบคทีเรีย และไม่ขึ้นอยู่กับทรัพยากรที่มีอยู่ในบริเวณดังกล่าว[10]
การจัดการระบบนิเวศ
[แก้]การจัดการระบบนิเวศ จะเกิดขึ้นเมื่อมีการจัดการทรัพยากรธรรมชาติ ที่มีในระบบนิเวศมากกว่า 1 ชนิด F. Stuart Chapin ได้นิยามไว้ว่า “การประยุกต์ใช้ศาสตร์ทางนิเวศวิทยาในการจัดการทรัพยากรเพื่อส่งเสริมความยั่งยืนของระบบนิเวศในระยะยาว และการส่งมอบผลิตผลและบริการของระบบนิเวศที่สำคัญ”[11] Norman Christensen และคณะได้นิยามว่า “การจัดการเป้าหมายอย่างชัดเจน ดำเนินการตามนโยบาย ระเบียบการ การปฏิบัติและสามารถปรับตัวได้จากการตรวจสอบ กระบวนการที่จำเป็นเพื่อรักษาโครงสร้างของระบบนิเวศ และการวิจัยบนพื้นฐานความเข้าใจที่ดีที่สุดของเรามีปฏิสัมพันธ์ทางนิเวศวิทยา”[12] และ Peter Brussard และคณะได้นิยามว่า “การจัดการพื้นที่ที่มีความหลากหลายแบบของนิเวศบริการและชีวภาพ จะเก็บรักษาทรัพยากรเพื่อที่มนุษย์สามารถใช้อย่างเหมาะสมและสำหรับดำรงชีวิตที่ยั่งยืน”[13]
แม้ว่าคำจำกัดความของการจัดการระบบนิเวศจะมีมากมาย ได้มีการกำหนดหลักการเพื่อรองรับคำนิยามเหล่านี้[11] ไว้ว่า หลักการพื้นฐานคือการพัฒนาอย่างยั่งยืนในระยะยาวของการผลิตสินค้าและนิเวศบริการ[11] “การพัฒนาอย่างยั่งยืนเป็นสิ่งที่จำเป็นสำหรับการจัดการ ไม่ใช่ของแถม”[12] นอกจากนี้ยังต้องมีเป้าหมายที่ชัดเจนเกี่ยวกับวิถีทางในอนาคตและพฤติกรรมของระบบการจัดการ ข้อกำหนดสำคัญอื่น ๆ รวมถึงความเข้าใจความเสี่ยงของระบบนิเวศ รวมถึงการเชื่อมโยง การเปลี่ยนแปลงของระบบนิเวศ และในบริบทที่ระบบเป็นแบบฝังตรึง หลักการที่สำคัญอื่น ๆ รวมถึงความเข้าใจเกี่ยวกับบทบาทของมนุษย์ที่เป็นส่วนประกอบของระบบนิเวศและการจัดการที่เหมาะสม[12] ในขณะที่การจัดการระบบนิเวศระบบหนึ่ง เช่นส่วนหนึ่งของแผนเพื่อการอนุรักษ์ป่า ก็ยังสามารถนำมาประยุกต์ใช้ในการจัดการระบบนิเวศอื่น เช่น ระบบนิเวศเกษตร[12]
ภัยคุกคามจากมนุษย์ที่มีต่อระบบนิเวศ
[แก้]ขณะที่ประชากรมนุษย์เพิ่มมากขึ้น จึงมีความต้องการทรัพยากรในระบบนิเวศและมีผลกระทบของรอยเท้าทางนิเวศของมนุษย์ที่มากขึ้น ทรัพยากรธรรมชาติสามารถถูกทำลายและถูกใช้อย่างมากมายผลกระทบต่อสิ่งแวดล้อมจากมนุษย์ล้วนเป็นกระบวนการหรือวัสดุที่ได้มาจากการกระทำของมนุษย์ ส่งผลให้คุณภาพของอากาศและน้ำถูกทำลายมากยิ่งขึ้น รวมถึงการทำการประมงที่มากเกินไป การเกษตรที่ทำให้ศัตรูพืชและโรคระบาดขยายพื้นที่เกินการควบคุม และการตัดไม้ทำลายป่าซึ่งก่อให้เกิดน้ำท่วมรุนแรง จากรายงานพบว่าประมาณ 40–50% ของโลกในส่วนที่เป็นชั้นน้ำแข็งได้เปลี่ยนแปลงไปเป็นอย่างมาก ซึ่งความเสื่อมโทรมนี้ล้วนเกิดจากการกระทำของมนุษย์ มีการทำประมงที่มากเกินไป 66% ปริมาณของแก๊สคาร์บอนไดออกไซด์ในปัจจุบันเพิ่มขึ้นกว่า 30% ตั้งแต่มีการทำอุตสาหกรรมต่าง ๆ และในช่วง 2,000 ปีที่ผ่านมามีสายพันธุ์ของนกกว่า 25% ที่สูญพันธุ์ไป[14] บริการทางระบบนิเวศได้ถูกจำกัดและยังถูกคุกคามจากกิจกรรมของมนุษย์[15] เพื่อช่วยในการให้ข้อมูลแก่ผู้มีอำนาจตัดสินใจ นิเวศบริการจำนวนมากได้รับการกำหนดมูลค่าทางเศรษฐกิจ ซึ่งมักขึ้นอยู่กับต้นทุนของการแทนที่ด้วยทางเลือกอื่นของมนุษย์ ความท้าทายอย่างต่อเนื่องของการกำหนดมูลค่าทางเศรษฐกิจให้กับธรรมชาติ เช่น ผ่านการธนาคารเพื่อความหลากหลายทางชีวภาพ กำลังกระตุ้นให้เกิดการเปลี่ยนแปลงแบบสหสาขาวิชาชีพในการรับรู้และจัดการสิ่งแวดล้อม ความรับผิดชอบต่อสังคม โอกาสทางธุรกิจ และอนาคตของเราในฐานะสายพันธุ์[15]
อ้างอิง
[แก้]- ↑ Tansley (1934); Molles (1999), p. 482; Chapin et al. (2011), p. 380; Schulze et al. (2005); p. 400; Gurevitch et al. (2006), p. 522; Smith & Smith (2012), p. G-5
- ↑ Odum, Eugene P (1971). Fundamentals of Ecology (third ed.). New York: Saunders. ISBN 978-0-534-42066-6.
- ↑ Schulze, Ernst-Detlef; Erwin Beck; Klaus Müller-Hohenstein (2005). Plant Ecology. Berlin: Springer. p. 400. ISBN 978-3-540-20833-4.
- ↑ Chapin et al. (2011), p. 380; Schulze et al. (2005), p. 400
- ↑ Willis (1997), p. 269; Chapin et al. (2011), p. 5; Krebs (2009), p. 572
- ↑ Chapin III, F. Stuart; Matson, Pamela A.; Vitousek, Peter M. (2011). Principles of Terrestrial Ecosystem Ecology (PDF). Melissa C. Chapin (Second ed.). New York: Springer. p. 10. doi:10.1007/978-1-4419-9504-9. ISBN 978-1-4419-9503-2. LCCN 2011935993.
- ↑ Salisbury and Ross (1969); Naumov (1972)
- ↑ Chapin et al. (2011), pp. 11–13
- ↑ Odum, Howard T. (1988). "Self-organization, transformity, and information". Science. 242 (4882): 1132–1139. doi:10.1126/science.242.4882.1132. JSTOR 1702630. PMID 17799729.
- ↑ 10.0 10.1 10.2 10.3 10.4 10.5 Chapin et al. (2011), pp. 151–157
- ↑ 11.0 11.1 11.2 Chapin et al. (2011), pp. 362–365
- ↑ 12.0 12.1 12.2 12.3 Christensen, Norman L.; Bartuska, Ann M.; Brown, James H.; และคณะ (1996). "The Report of the Ecological Society of America Committee on the Scientific Basis for Ecosystem Management". Ecological Applications. 6 (3): 665–691. CiteSeerX 10.1.1.404.4909. doi:10.2307/2269460. JSTOR 2269460. S2CID 53461068.
- ↑ Brussard, Peter F.; J. Michael Reed; C. Richard Tracy (1998). "Ecosystem management: what is it really?" (PDF). Landscape and Urban Planning. 40 (1): 9–20. doi:10.1016/S0169-2046(97)00094-7.
- ↑ Vitousek, Peter M.; Lubchenco, Jane; Mooney, Harold A.; Melillo, Jerry M. (1997). "Human domination of Earth's ecosystems". Science. 277 (5325): 494–499. doi:10.1126/science.277.5325.494.
- ↑ 15.0 15.1 Ceccato, Pietro; Fernandes, Katia; Ruiz, Daniel; Allis, Erica (17 มิถุนายน 2014). "Climate and environmental monitoring for decision making". Earth Perspectives. 1 (1): 16. doi:10.1186/2194-6434-1-16. S2CID 46200068. สืบค้นเมื่อ 25 มกราคม 2022.
แหล่งข้อมูลอื่น
[แก้]- วิกิมีเดียคอมมอนส์มีสื่อเกี่ยวกับ ระบบนิเวศ
- คู่มือการท่องเที่ยว Biomes and ecosystems จากวิกิท่องเที่ยว (ในภาษาอังกฤษ)