จำนวนเชิงซ้อน

จากวิกิพีเดีย สารานุกรมเสรี

จำนวนเชิงซ้อน (อังกฤษ : complex number) ในทางคณิตศาสตร์ คือ เซตที่ต่อเติมจากเซตของจำนวนจริงโดยเพิ่มจำนวน i ซึ่งทำให้สมการ i^2+1=0 เป็นจริง และหลังจากนั้นเพิ่มสมาชิกตัวอื่นๆ เข้าไปจนกระทั่งเซตที่ได้ใหม่มีสมบัติการปิดภายใต้การบวกและการคูณ จำนวนเชิงซ้อน z ทุกตัวสามารถเขียนอยู่ในรูป x + iy โดยที่ x และ y เป็นจำนวนจริง โดยเราเรียก x และ y ว่าส่วนจริง (real part) และส่วนจินตภาพ (imaginary part) ของ z ตามลำดับ

เซตของจำนวนเชิงซ้อนทุกตัวมักถูกแทนด้วยสัญลักษณ์ \mathbb{C} จากนิยามข้างต้นเราได้ว่าเซตของจำนวนจริงเป็นสับเซตของเซตของจำนวนเชิงซ้อน ดังนั้นจำนวนจริงทุกตัวเป็นจำนวนเชิงซ้อน เราสามารถบวก ลบ คูณ และหารสมาชิกสองตัวใดๆ ของเซตของจำนวนเชิงซ้อนได้ (เว้นแต่ในกรณีที่ตัวหารคือศูนย์) และผลลัพธ์ที่ได้จะเป็นจำนวนเชิงซ้อนเสมอ ดังนั้นในทางคณิตศาสตร์เราจึงกล่าวว่าเซตของจำนวนเชิงซ้อนเป็นฟีลด์ นอกจากนี้เซตของจำนวนเชิงซ้อนยังมีสมบัติการปิดทางพีชคณิต (algebraically closed) กล่าวคือ พหุนามที่มีสัมประสิทธิ์เป็นจำนวนเชิงซ้อนจะมีราก (พหุนาม)เป็นจำนวนเชิงซ้อนด้วย สมบัตินี้เป็นที่รู้จักในชื่อทฤษฎีบทมูลฐานของพีชคณิต

นอกจากนี้ ในทางคณิตศาสตร์แล้วคำว่า "เชิงซ้อน" ถูกใช้เป็นคำคุณศัพท์ที่มีความหมายว่าฟีลด์ของตัวเลขที่เราสนใจคือฟีลด์ของจำนวนเชิงซ้อน ยกตัวอย่างเช่น การวิเคราะห์เชิงซ้อน, พหุนามเชิงซ้อน, แมทริกซ์เชิงซ้อน, และพีชคณิตลีเชิงซ้อน เป็นต้น

นิยาม[แก้]

ฟีลด์ของจำนวนเชิงซ้อน[แก้]

ฟีลด์ของจำนวนเชิงซ้อน \mathbb{C} ประกอบด้วยเซตของคู่ลำดับ (a,b) ทั้งหมดโดยที่ a และ b เป็นจำนวนจริง และปฏิบัติการสองตัวคือ + (การบวก) และ \cdot (การคูณ) โดยปฏิบัติการทั้งมีนิยามดังต่อไปนี้

ให้ (a,b) และ (c,d) เป็นจำนวนเชิงซ้อนใดๆ

(a,b)+(c,d) = (a+c, b+d) \,
(a,b)\cdot(c,d) = (ac-bd, ad+bc) \,

เมื่อการบวก การลบ และการคูณภายในคู่ลำดับคือการบวก การลบ และการคูณจำนวนจริง

เซตของจำนวนเชิงซ้อนและปฏิบัติการทั้งสองมีสมบัติเป็นฟีลด์ กล่าวคือ

  • การบวกและการคูณมีสมบัติการปิด การสลับที่ การเปลี่ยนกลุ่ม และการแจกแจง
  • มีเอกลักษณ์การบวกคือ (0,0)
  • มีเอกลักษณ์การคูณคือ (1,0)
  • อินเวอร์สการบวกของ z=(a,b) (เขียนแทนด้วย -z) คือ (-a,-b)
  • ถ้าหาก z = (a,b) \neq (0,0) อินเวอร์สการคูณของ z (เขียนแทนด้วย z^{-1}) คือ \left( \frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2} \right)

จำนวนเชิงซ้อนในฐานะปริภูมิเวกเตอร์และฟีลด์ต่อเติม[แก้]

อนึ่ง เราอาจมองเซตของจำนวนเชิงซ้อนเป็นปริภูมิเวกเตอร์สองมิติบนเซตของจำนวนจริง เราสามารถใช้การบวกจำนวนเชิงซ้อนแทนการบวกเวกเตอร์ และการคูณด้วยสเกลาร์สามารถนิยามได้ดังต่อไปนี้

c(a,b) = (ca,cb) = (a,b)c \, เมื่อ c เป็นจำนวนจริงและ (a,b) เป็นจำนวนเชิงซ้อนใดๆ

ด้วยเหตุนี้เราได้ว่าฐานหลักหนึ่งของเซตของจำนวนเชิงซ้อนประกอบด้วยเวกเตอร์ (1,0) และ (0,1) กล่าวคือเราสามารถเขียนจำนวนเชิงซ้อนทุกตัวในรูปของผลรวมเชิงเส้นของเวกเตอร์ทั้งสอง:

 (a,b) = a(1,0) + b(0,1) \,

ตามความนิยม เรามักแปลความหมายของ (a,0) = a(1,0) ว่าเป็นจำนวนจริง a (ด้วยเหตุนี้เราจึงกล่าวว่าเซตจำนวนจริงเป็นสับเซตของเซตจำนวนเชิงซ้อน) และมักใช้สัญลักษณ์ i แทน (0,1) จำนวนเชิงซ้อน (a,b) จึงเขียนได้อีกแบบหนึ่งว่า a+bi ซึ่งเป็นที่นิยมใช้มากกว่าแบบคู่ลำดับ

จากนิยามการคูณจำนวนเชิงซ้อนข้างต้น เราได้ว่า i^2 = (-1,0) = -1 นั่นคือ i เป็นคำตอบของสมการ x^2 + 1 = 0 ซึ่งไม่สามารถหาคำตอบได้ในเซตของจำนวนจริง ดังนั้น เซตของจำนวนเชิงซ้อนจึงเป็นฟีลด์ต่อเติม (field extension) ของเซตของจำนวนจริงโดยการเพิ่มรากของพหุนาม x^2 +1 อีกนัยหนึ่ง เซตของจำนวนเชิงซ้อนคือริงผลหาร (quotient ring) ของริงพหุนาม \mathbb{R}[x] กับไอดีล (x^2+1) เขียนเป็นประโยคสัญลักษณ์ได้ว่า

\mathbb{C} = \mathbb{R}[x]/(x^2+1)

สัญลักษณ์และคำศัพท์ที่เกี่ยวข้อง[แก้]

ส่วนจริงและส่วนจินตภาพ[แก้]

ถ้า z = a+bi \, เราเรียก a ว่า ส่วนจริง ของ z เขียนแทนด้วยสัญลักษณ์ \Re(z) และเราเรียก b ว่า ส่วนจินตภาพ ของ z เขียนแทนด้วยสัญลักษณ์ \Im(z) เราเรียกจำนวนเชิงซ้อนที่มีส่วนจริงเป็น 0 และส่วนจินตภาพไม่เป็น 0 ว่าจำนวนจินตภาพ (imaginary number)

สังยุคเชิงซ้อน[แก้]

ถ้า z=a+bi\, เป็นจำนวนเชิงซ้อน สังยุคของ z คือ a-bi\, เราเขียนแทนสังยุคของ z ด้วย \bar{z} สังยุคของจำนวนเชิงซ้อนมีสมบัติสำคัญๆ ดังต่อไปนี้

  1. \overline{z_{1}+z_{2}}=\bar{z}_{1}+\bar{z}_{2}
  2. \overline{z_{1}z_{2}}=\bar{z}_{1}\bar{z}_{2}
  3. z + \bar{z} = 2\Re(z)
  4. z - \bar{z} = 2\Im(z)

เมื่อ z, z_1, z_2 เป็นจำนวนเชิงซ้อนใดๆ

ขนาดของจำนวนเชิงซ้อน[แก้]

ขนาดของจำนวนเชิงซ้อน z=a+bi \, เขียนแทนด้วย |z| คือจำนวนจริงบวก \sqrt{a^2 + b^2} เราอาจแปลความหมายของขนาดของจำนวนเชิงซ้อนได้ว่าเป็นความยาวของเส้นตรงที่ลากจากจุด (0,0) ไปยังจุด (a,b) บนระบบพิกัดคาร์ทีเซียน ขนาดของจำนวนเชิงซ้อนมีสมบัติสำคัญๆ ดังต่อไปนี้

  1. \left|z\right\vert=\left|\bar z\right\vert
  2. \left|z\right\vert^2=z \bar{z}
  3. \left|z_1z_2\right\vert=\left|z_1\right\vert\left|z_2\right\vert
  4. \left|z_1+z_2\right\vert\le\;\left|z_1\right\vert+\left|z_2\right\vert (อสมการสามเหลี่ยม)
  5. \left|z_1-z_2\right\vert\ge\;\big|\left|z_1\right\vert-\left|z_2\right\vert\big|
  6. \left|z\right\vert=0 ก็ต่อเมื่อ z=0\,

เมื่อ z, z_1, และ z_2 เป็นจำนวนเชิงซ้อนใดๆ จากสมบัติข้อที่สองและการแทนจำนวนจริง a ด้วยจำนวนเชิงซ้อน (a,0) ทำให้เราได้ว่าถ้า z \neq 0

z^{-1} = \frac{\bar{z}}{|z|^2}

ระนาบเชิงซ้อน[แก้]

Complex.png

เรายังสามารถมองจำนวนเชิงซ้อนเป็นจุดหรือเวกเตอร์บนระบบพิกัดคาร์ทีเซียนสองมิติ และมักจะเรียกระนาบนี้ว่าระนาบเชิงซ้อน (complex plane) หรือผังของอาร์กานด์ ตามชื่อของ ชอง-โรแบร์ต อาร์กานด์ ผู้ค้นพบ

พิกัดคาร์ทีเซียนของจำนวนเชิงซ้อน z = a+bi \, คือ (a,b) ในขณะที่พิกัดเชิงขั้วคิอ (r,\varphi) \, เมื่อ r = |z| และ \varphi \, เป็นมุมที่เวกเตอร์ (a,b) ทำกับแกน x ในหน่วยเรเดียน เราเรียก \varphi \, ว่า อาร์กิวเมนต์ของ z และเขียนแทนด้วยสัญลักษณ์ \arg(z) สังเกตว่าจำนวนเชิงซ้อนที่มีอาร์กิวเมนต์ต่างกันเท่ากับผลคูณของจำนวนเต็มกับ 2\pi จะมีค่าเท่ากัน

สูตรของออยเลอร์ช่วยแสดงความสัมพันธ์ระหว่างพิกัดคาร์ทีเซียนและพิกัดเชิงขั้ว อีกทั้งยังช่วยให้เราสามารถเขียนจำนวนเชิงซ้อนได้อีกรูปแบบหนึ่งดังต่อไปนี้

z = a+bi = r(\cos \varphi + i \sin \varphi) = re^{i\varphi}\,

และเรายังสามารถพิสูจน์ได้ว่า

r_1 e^{i\varphi_1} \cdot r_2 e^{i\varphi_2} = r_1r_2e^{i(\varphi_1 + \varphi_2)} = r_1r_2(\cos (\varphi_1+\varphi_2) + i\sin(\varphi_1+\varphi_2))

และ

\frac{r_1 e^{i\varphi_1}}{r_2 e^{i\phi_2}} = \frac{r_1}{r_2}e^{i(\varphi_1 - \varphi_2)} = \frac{r_1}{r_2}(\cos (\varphi_1-\varphi_2) + i\sin(\varphi_1-\varphi_2))

เมื่อ r_2 \neq 0 ด้วยเหตุนี้เราจึงสามารถมองการคูณจำนวนเชิงซ้อนตัวหนึ่งๆ ว่าเป็นการหมุนและการยืด (หรือหด) เวกเตอร์ด้วยอาร์กิวเมนต์และขนาดของจำนวนเชิงซ้อนตัวนั้นตามลำดับ

การคูณด้วย i = e^{i\pi/2} จึงสมมูลกับการหมุนเวกเตอร์ 90 องศาทวนเข็มนาฬิกา สมการ ฉะนั้นเราสามารถเข้าใจความหมายของสมการ i^2 = -1 ได้อีกนัยหนึ่งว่า "การหมุน 90 องศาสองครั้งมีค่าเท่ากับการหมุน 180 องศา" หรือ "เมื่อหมุนเวกเตอร์ (0,1) ไป 90 องศา ผลลัพธ์ที่ได้คือเวกเตอร์ (-1,0)"

สมบัติต่างๆ[แก้]

การเรียงลำดับ[แก้]

\mathbb{C} ไม่เป็นฟีลด์อันดับ กล่าวคือเราไม่สามารถเรียงลำดับจำนวนเชิงซ้อนโดยที่การเรียงลำดับนั้นสอดคล้องกับการบวกและการคูณจำนวนเชิงซ้อนได้เลย

ปริภูมิเวกเตอร์[แก้]

อย่างที่ได้กล่าวไว้ข้างต้น \mathbb{C} เป็นปริภูมิเวกเตอร์สองมิติบน \mathbb{R} เราได้ว่าการแปลงเชิงเส้นบน \mathbb{R} (\mathbb{R}-linear map) ทุกตัวจะสามารถเขียนได้ในรูป

f(z) = az + b\bar{z}

เมื่อ a และ b เป็นจำนวนเชิงซ้อนใดๆ เราได้ว่าฟังก์ชัน f_1(z) = a(z) เป็นการหมุนและการยืดเวกเตอร์ ส่วนฟังก์ชัน f_2(z) = b\bar{z} นั้นประกอบด้วยการหมุน การพลิก และการยืดเวกเตอร์ในฟังก์ชันเดียว สังเกตว่า f_1 เท่านั้นที่เป็นการแปลงเชิงเส้นบน \mathbb{C} และเป็นฟังก์ชันโฮโลมอร์ฟิก เราสามารถหาอนุพันธ์ของ f_2 ได้ในเซตของจำนวนจริง แต่อนุพันธ์นั้นไม่สอดคล้องกับสมการโคชี-รีมันน์

สมบัติเชิงพีชคณิต[แก้]

\mathbb{C} (หรือฟีลด์อื่นที่สมสัณฐานกับ C) จะมีลักษณะจำเพาะสามประการ ดังนี้

ด้วยเหตุนี้ \mathbb{C} จึงมีฟีลด์ย่อยแท้ที่สมสัณฐานกับตัวมันเองอยู่เป็นจำนวนมาก นอกจากนี้กาลอยด์กรุปของ \mathbb{C} บนเชตของจำนวนตรรกยะมีขนาดเท่ากับเซตกำลังของเซตของจำนวนจริง