สมการ

จากวิกิพีเดีย สารานุกรมเสรี
บทความนี้เกี่ยวกับสมการทางคณิตศาสตร์ สำหรับทางเคมี ดูที่ สมการเคมี

สมการ หมายถึงประโยคสัญลักษณ์ทางคณิตศาสตร์ ที่ใช้แสดงว่าสองสิ่งเหมือนกัน หรือเทียบเท่ากัน ที่เชื่อมด้วยเครื่องหมายเท่ากับ ดังตัวอย่าง

สมการมักใช้เป็นการกำหนดสภาความเท่ากันของสองนิพจน์ที่มีตัวแปรอย่างน้อยหนึ่งตัว ตัวอย่างเช่น เมื่อเราให้ค่าใดๆ กับ สมการนี้จะเป็นจริงเสมอ

ทั้งสองสมการข้างต้นเป็นตัวอย่างหนึ่งของสมการที่เป็นเอกลักษณ์ ซึ่งหมายความว่า สมการจะเป็นจริงโดยไม่ต้องมีการแทนค่าใดๆ ลงในตัวแปร สำหรับสมการต่อไปนี้ไม่ได้เป็นเอกลักษณ์

สมการข้างบนนี้จะไม่เป็นจริงเมื่อแทนค่าอื่นใด แต่จะเป็นจริงแค่เพียงค่าเดียว เราเรียกค่าที่ทำให้สมการเป็นจริงนั้นว่า รากของสมการ สำหรับรากของสมการดังกล่าวคือ 1 ดังนั้น สมการนี้สามารถเป็นจริงได้ ขึ้นอยู่กับค่าของ เรียก x ที่ทำให้สมการเป็นจริงว่า "คำตอบของสมการ" นั่นคือการแก้สมการจึงเป็นการหาคำตอบของสมการวิธีหนึง เช่น 5 - x = 1 มีคำตอบของสมการ คือ 4

หลักการแก้สมการ[แก้]

การแก้สมการให้ย้ายข้างดังนี้

1. ถ้าตัวเลขในฝั่งซ้ายมีค่าเป็นบวก และฝั่งขวามีค่าเป็นบวกและมากกว่าฝั่งซ้ายให้ย้ายไปลบได้เลย คริคริ

หมายเหตุ ในคณิตศาสตร์นั้นไม่มีกฏการย้ายข้าง แท้จริงแล้วการย้ายข้างของสมการคือการนำค่า 56 มาลบออก ที่ทั้งสองข้างของสมการ

คุณสมบัติ[แก้]

ถ้าสมการในพีชคณิตสามารถเป็นจริงได้ การกระทำต่อไปนี้ก็สามรถทำให้ทั้งสองข้างเท่ากัน เราเรียกว่า สมบัติการเท่ากัน

  1. ปริมาณใดๆ สามารถบวกทั้งสองข้างของสมการได้ หรอ
  2. ปริมาณใดๆ สามารถลบทั้งสองข้างของสมการได้ หรอ
  3. ปริมาณใดๆ สามารถคูณทั้งสองข้างของสมการได้ หรอ
  4. ปริมาณใดๆ ที่ไม่เท่ากับศูนย์ สามารถหารทั้งสองข้างของสมการได้ หรอ
  5. โดยทั่วไป ฟังก์ชันใดๆ สามารถนำไปใช้กับทั้งสองข้างของสมการได้ (ยกเว้นบางฟังก์ชันที่ต้องกำหนดเงื่อนไขก่อนนำไปใช้ เช่น ฟังก์ชันตรีโกณมิติ ฟังก์ชันเอกซโพเนนเชียล เป็นต้น)

ดูเพิ่ม[แก้]