แรง

จากวิกิพีเดีย สารานุกรมเสรี
กลศาสตร์ดั้งเดิม
ประวัติ
จัดการ: แม่แบบ  พูดคุย  แก้ไข

แรง ในทางฟิสิกส์คือการกระทำจากภายนอกที่ก่อให้เกิดการเปลี่ยนแปลงของระบบทางกายภาพ โดยแรงเป็นผลมาจากการใช้พลังงาน เช่น คนที่จูงสุนัขอยู่ด้วยเชือกล่าม ก็จะได้รับแรงจากเชือกที่มือ ซึ่งทำให้เกิดแรงดึงไปข้างหน้า ถ้าแรงก่อให้เกิดการเปลี่ยนแปลงทางจลนศาสตร์ตามกฎข้อที่สองของนิวตันคือ เกิดความเร่ง ถ้าไม่เกิดการเปลี่ยนแปลงทางจลนศาสตร์ก็อาจก่อให้เกิดความเปลี่ยนแปลงอื่นๆ ได้เช่นกัน หน่วยเอสไอของแรงคือ นิวตัน

แนวความคิดพื้นฐาน[แก้]

ในนิยามเบื้องต้นของแรงอาจกล่าวได้ว่า แรงคือ สิ่งที่ก่อให้เกิดความเร่ง เมื่อกระทำเดี่ยวๆ ในความหมายเชิงปฏิบัติ แรงสามารถแบ่งได้เป็นสองกลุ่ม คือแรงปะทะ และแรงสนาม แรงปะทะจะต้องมีการปะทะทางกายภาพของสองวัตถุ เช่นค้อนตีตะปู หรือแรงที่เกิดจากก๊าซใต้ความกดดัน ก๊าซที่เกิดจากการระเบิดของดินปืนทำให้ลูกกระสุนปืนใหญ่พุ่งออกจากปืนใหญ่ ในทางกลับกัน แรงสนามไม่ต้องการการสัมผัสกันของสื่อกลางทางกายภาพ แรงโน้มถ่วง และ แม่เหล็กเป็นตัวอย่างของแรงชนิดนี้ อย่างไรก็ตาม โดยพื้นฐานแล้วทุกแรงเป็นแรงสนาม แรงที่ค้อนตีตะปูในตัวอย่างก่อนหน้านี้ ที่จริงแล้วเป็นการปะทะกันของแรงไฟฟ้าจากทั้งค้อนและตะปู แต่ทว่าในบางกรณีก็เป็นการเหมาะสมที่เราจะแบ่งแรงเป็นสองชนิดแบบนี้เพื่อง่ายต่อความเข้าใจ

นิยามเชิงปริมาณ[แก้]

ในแบบจำลองทางฟิสิกส์ เราใช้ระบบเป็นจุด กล่าวคือเราแทนวัตถุด้วยจุดหนึ่งมิติที่ศูนย์กลางมวลของมัน การเปลี่ยนแปลงเพียงชนิดเดียวที่เกิดขึ้นได้กับวัตถุก็คือการเปลี่ยนแปลงโมเมนตัม (อัตราเร็ว) ของมัน ตั้งแต่มีการเสนอทฤษฎีอะตอมขึ้น ระบบทางฟิสิกส์ใดๆ จะถูกมองในวิชาฟิสิกส์ดั้งเดิมว่าประกอบขึ้นจากระบบเป็นจุดมากมายที่เรียกว่าอะตอมหรือโมเลกุล เพราะฉะนั้น แรงต่างๆ สามารถนิยามได้ว่าเป็นผลกระทบของมัน นั่นก็คือเป็นการเปลี่ยนแปลงสภาพการเคลื่อนที่ที่มันได้รับบนระบบเป็นจุด การเปลี่ยนแปลงการเคลื่อนที่นั้นสามารถระบุจำนวนได้โดยความเร่ง (อนุพันธ์ของความเร็ว) การค้นพบของไอแซก นิวตันที่ว่าแรงจะทำให้เกิดความเร่งโดยแปรผกผันกับปริมาณที่เรียกว่ามวล ซึ่งไม่ขึ้นอยู่กับอัตราเร็วของระบบ เรียกว่ากฎข้อที่สองของนิวตัน กฎนี้ทำให้เราสามารถทำนายผลกระทบของแรงต่อระบบเป็นจุดใดๆ ที่เราทราบมวล กฎนั้นมักจะเขียนดังนี้

F = dp/dt = d (m·v) /dt = m·a (ในกรณีที่ m ไม่ขึ้นกับ t)

เมื่อ

F คือแรง (ปริมาณเวกเตอร์)
p คือโมเมนตัม
t คือเวลา
v คือความเร็ว
m คือมวล และ
a=d²x/dt² คือความเร่ง อนุพันธ์อันดับสองของเวกเตอร์ตำแหน่ง x เมื่อเทียบกับ t

ถ้ามวล m วัดในหน่วยกิโลกรัม และความเร่ง a วัดในหน่วย เมตรต่อวินาทีกำลังสอง แล้วหน่วยของแรงคือ กิโลกรัม-เมตร/วินาทีกำลังสอง เราเรียกหน่วยนี้ว่า นิวตัน: 1 N = 1 kg x 1 m/s²

สมการนี้เป็นระบบของสมการอนุพันธ์อันดับสอง สามสมการ เทียบกับเวกเตอร์บอกตำแหน่งสามมิติ ซึ่งเป็นฟังก์ชันกับเวลา เราสามารถแก้สมการนี้ได้ถ้าเราทราบฟังก์ชัน F ของ x และอนุพันธ์ของมัน และถ้าเราทราบมวล m นอกจากนี้ก็ต้องทราบเงื่อนไขขอบเขต เช่นค่าของเวกเตอร์บอกตำแหน่ง และ x และความเร็ว v ที่เวลาเริ่มต้น t=0

สูตรนี้จะใช้ได้เมื่อทราบค่าเป็นตัวเลขของ F และ m เท่านั้น นิยามข้างต้นนั้นเป็นนิยามโดยปริยายซึ่งจะได้มาเมื่อ มีการกำหนดระบบอ้างอิง (น้ำหนึ่งลิตร) และแรงอ้างอิง (แรงโน้มถ่วงของโลกกระทำต่อมันที่ระดับความสูงของปารีส) ยอมรับกฎข้อที่สองของนิวตัน (เชื่อว่าสมมติฐานเป็นจริง) และวัดความเร่งที่เกิดจากแรงอ้างอิงกระทำต่อระบบอ้างอิง เราจะได้หน่วยของมวล (1 kg) และหน่วยของแรง (หน่วยเดิมเป็น 1 แรงกิโลกรัม = 9.81 N) เมื่อเสร็จสิ้น เราจะสามารถวัดแรงใดๆ โดยความเร่งที่มันก่อให้เกิดบนระบบอ้างอิง และวัดมวลของระบบใดๆ โดยการวัดความเร่งที่เกิดบนระบบนี้โดยแรงอ้างอิง

แรงมักจะไปรับการพิจารณาว่าเป็นปริมาณพื้นฐานทางฟิสิกส์ แต่ก็ยังมีปริมาณที่เป็นพื้นฐานกว่านั้นอีก เช่นโมเมนตัม (p = มวล m x ความเร่ง v) พลังงาน มีหน่วยเป็น จูล นั้นเป็นพื้นฐานน้อยกว่าแรงและโมเมนตัม เพราะมันนิยามขึ้นจากงาน และงานนิยามจากแรง ทฤษฎีพื้นฐานที่สุดในธรรมชาติ ทฤษฎีกลศาสตร์ไฟฟ้าควอนตัม และ ทฤษฎีสัมพัทธภาพทั่วไป ไม่มีแนวคิดเรื่องแรงรวมอยู่ด้วยเลย

ถึงแม้แรงไม่ใช่ปริมาณที่เป็นพื้นฐานที่สุดในฟิสิกส์ มันก็เป็นแนวคิดพื้นฐานที่แรวคิดอื่นๆ เช่น งาน และ ความดัน (หน่วย ปาสกาล) นำไปใช้ แรงในบางครั้งใช้สับสนกับความเค้น

ชนิดของแรง[แก้]

มีแรงพื้นฐานในธรรมชาติที่รู้จักด้วยกันอยู่สี่ชนิด

ทฤษฎีสนามควอนตัมจำลองแรงพื้นฐานสามชนิดแรกได้อย่างแม่นยำ แต่ไม่ได้จำลองแรงโน้มถ่วงควอนตัมเอาไว้ อย่างไรก็ตาม แรงโน้มถ่วงควอนตัมบริเวณกว้างสามารถอธิบายได้ด้วย ทฤษฎีสัมพัทธภาพทั่วไป

แรงพื้นฐานทั้งสี่สามารถอธิบายปรากฏการณ์ที่สังเกตได้ทั้งหมด รวมถึงแรงอื่นๆ ที่สังเกตได้เช่น แรงคูลอมบ์ (แรงระหว่างประจุไฟฟ้า) แรงโน้มถ่วง (แรงระหว่างมวล) แรงแม่เหล็ก แรงเสียดทาน แรงสู่ศูนย์กลาง แรงหนีศูนย์กลาง แรงปะทะ และ แรงสปริง เป็นต้น

แรงต่างๆ ยังสามารถแบ่งออกเป็น แรงอนุรักษ์ และแรงไม่อนุรักษ์ แรงอนุรักษ์จะเท่ากับความชันของพลังงานศักย์ เช่น แรงโน้มถ่วง แรงแม่เหล็กไฟฟ้า และแรงสปริง แรงไม่อนุรักษ์เช่น แรงเสียดทาน และแรงต้าน

ผลจากแรง[แก้]

เมื่อแรงถูกกระทำกับวัตถุหนึ่ง วัตถุนั้นสามารถได้รับผลกระทบ 4 ประเภท ดังนี้

  1. วัตถุที่อยู่นิ่งอาจเริ่มเคลื่อนที่
  2. ความเร็วของวัตถุที่กำลังเคลื่อนที่อยู่เปลี่ยนแปลงไป
  3. ทิศทางการเคลื่อนที่ของวัตถุอาจเปลี่ยนแปลงไป
  4. รูปร่าง ขนาดของวัตถุอาจเปลี่ยนแปลงไป

กฎของนิวตัน[แก้]

เซอร์ ไอแซก นิวตัน นักวิทยาศาสตร์และนักคณิตศาสตร์ชาวอังกฤษ ได้ศึกษาเรื่องแรงและได้อธิบายกฎสามข้อของแรงไว้ในหนังสือของท่าน คือ The Philosophiae Naturalis Principia Mathematica

กฎทั้งสามข้อมีอยู่ดังนี้

1. หากไม่มีแรงมากระทำต่อวัตถุหนึ่ง วัตถุนั้นจะคงสภาพอยู่นิ่ง ส่วนวัตถุที่กำลังเคลื่อนที่จะเคลื่อนที่ต่อไปด้วยความเร็วคงที่ในแนวตรง จนกว่าจะมีแรงอื่นมากระทำต่อวัตถุนั้น สูตร ∑F=0 (กฎของความเฉื่อย)

2. เมื่อมีแรงมากระทำต่อวัตถุหนึ่ง แรงนั้นจะเปลี่ยนแปลงโมเมนตัมของวัตถุและทำให้วัตถุเคลื่อนที่ไปตามแนวแรง โดยความเร็วของวัตถุจะแปรผันตามแรงนั้น สูตร ∑F=ma (กฎของแรง)

3. เมื่อวัตถุหนึ่งออกแรงกระทำต่อวัตถุอีกชิ้นหนึ่ง วัตถุที่ถูกกระทำจะออกแรงกระทำกลับในขนาดที่เท่ากัน สูตร Action=Reaction (กฎของแรงปฏิกิริยา)

อ้างอิง[แก้]

  • วิสัชนา ป้อมเสมา,โครงการเรียนรู้เรื่องวิทยาศาสตร์โลกและอวกาศ (LESA). 2554. กฎของนิวตัน (Newton’s laws). (ออนไลน์). http://www.kanta.ac.th/media/sci/www.lesa.in.th/space/laws/newton/newton.htm. 24 ธันวาคม 2554
  • McKeever, Susan; Foote, Martyn (1993). The Random House science encyclopedia. Toronto: Random House. ISBN 0-394-22341-1
  • อารโนลด์, นิก. แรงพิฆาต. พิมพ์ครั้งที่ 2. กรุงเทพฯ: นานมีบุ๊คส์, 2544. ISBN 974-472-556-7