ปฏิสสาร
ในวิชาฟิสิกส์อนุภาค ปฏิสสาร (อังกฤษ: Antimatter) คือ ส่วนประกอบของแนวคิดเกี่ยวกับปฏิยานุภาคของสสาร โดยที่ปฏิสสารประกอบด้วยปฏิยานุภาคในทำนองเดียวกับที่อนุภาคประกอบขึ้นเป็นสสารปรกติ ตัวอย่างเช่น แอนติอิเล็กตรอน (ปฏิยานุภาคของอิเล็กตรอน หรือ e+) 1 ตัว และแอนติโปรตอน (โปรตอนที่มีขั้วเป็นลบ) 1 ตัว สามารถรวมตัวกันเกิดเป็นอะตอมแอนติไฮโดรเจนได้ ในทำนองเดียวกันกับที่อิเล็กตรอน 1 ตัวกับโปรตอน 1 ตัวสามารถรวมกันเป็นอะตอมไฮโดรเจนที่เป็น "สสารปกติ" หากนำสสารและปฏิสสารมารวมกัน จะเกิดการทำลายล้างกันในทำนองเดียวกับการรวมอนุภาคและปฏิยานุภาค ซึ่งจะได้โฟตอนพลังงานสูง (หรือรังสีแกมมา) หรือคู่อนุภาค-ปฏิยานุภาคอื่น เมื่อปฏิยานุภาคเจอกับอนุภาคจะเกิดการประลัย ผลลัพธ์ที่ได้จากการพบกันของสสารและปฏิสสารคือการถูกปลดปล่อยของพลังงานซึ่งเป็นสัดส่วนกับมวลตามที่ปรากฏในสมการความสมมูลระหว่างมวล-พลังงาน, E = mc 2 [1]
ยังเป็นข้อสงสัยอยู่ว่า ทำไมเอกภพที่สังเกตได้จึงมีแต่สสารเกือบทั้งหมด มีที่แห่งอื่นอีกหรือไม่ที่มีแต่ปฏิสสารเกือบทั้งหมด และอะไรจะเกิดขึ้นหากสามารถนำปฏิสสารมาใช้งาน ขณะนี้ การที่มีสสารกับปฏิสสารอยู่อย่างไม่สมดุลในเอกภพที่สังเกตได้เป็นหนึ่งในปัญหาที่ยังไขไม่ออกที่ยิ่งใหญ่ที่สุดในวิชาฟิสิกส์ (unsolved problems in physics) [2] กระบวนการที่ทำให้เกิดความไม่สมดุลระหว่างอนุภาคกับปฏิยานุภาคนี้ เรียกชื่อว่า แบริโอเจเนซิส
ปฏิสสารในรูปแบบของแอนติอะตอมเป็นหนึ่งในวัสดุที่ยากที่สุดในการผลิต ปฏิสสารจะมีอยู่ในรูปแบบของปฏิยานุภาคในแต่ละอนุภาค, อย่างไรก็ตาม, มีการผลิตขึ้นโดยทั่วไปได้จากเครื่องเร่งอนุภาคและในการสลายตัวของสารกัมมันตรังสีบางชนิด
ประวัติของแนวคิด
[แก้]บทความนี้อาจต้องการตรวจสอบต้นฉบับ ในด้านไวยากรณ์ รูปแบบการเขียน การเรียบเรียง คุณภาพ หรือการสะกด คุณสามารถช่วยพัฒนาบทความได้ |
แนวคิดในเรื่องสสารเชิงลบได้มีปรากฏในทฤษฎีเรื่องสสารที่ผ่านมาในอดีต เป็นทฤษฎีซึ่งขณะนี้ได้ถูกละทิ้ง โดยใช้ทฤษฎีกระแสวนของแรงโน้มถ่วง (vortex theory of gravity) ที่ครั้งหนึ่งเคยได้รับความนิยม, เป็นความน่าจะเป็นของสสารกับแรงโน้มถ่วงที่มีค่าเป็นลบซึ่งได้ถูกอ้างไว้โดยวิลเลียม ฮิกส์ ในคริสต์ทศวรรษ 1880 ในระหว่างคริสต์ทศวรรษ 1880 และ 1890, คาร์ล เพียร์สันได้นำเสนอความมีอยู่ของการ "ปะทุ" (squirts) (ของแหล่งกำเนิด) และการยุบตัวของกระแสอีเทอร์ แสดงถึงการปะทุตัวของสสารปกติและแสดงถึงการยุบตัวของสสารเชิงลบ ทฤษฎีของเพียร์สันจำเป็นต้องใช้มิติที่สี่สำหรับการไหลเข้าและไหลออกของอีเทอร์[3]
ศัพท์ "ปฏิสสาร" ถูกใช้เป็นครั้งแรกโดยอาเธอร์ ชูสเตอร์ (Arthur Schuster) ในจดหมายที่ค่อนข้างแปลกสองฉบับในวารสารเนเจอร์ (Nature) ในปี 1898[4] ซึ่งเป็นเอกสารที่เขาบัญญัติศัพท์นี้ เขาได้ตั้งสมมติฐานเรื่องแอนติอะตอม (antiatom) ตลอดทั่วทั้งระบบสุริยะของปฏิสสาร และกล่าวถึงความเป็นไปได้ของสสารและการเกิดประลัย (annihilating) ซึ่งกันและกัน ความคิดของชูสเตอร์ไม่ถูกกับข้อเสนอทางทฤษฎีอย่างร้ายแรง เป็นเพียงการคาดเดาเอาเองเท่านั้น และเช่นเดียวกับความคิดก่อนหน้านี้ แตกต่างจากแนวคิดที่ทันสมัยของปฏิสสารในการที่จะมีแรงโน้มถ่วงเชิงลบ [5]
ทฤษฎีใหม่ของปฏิสสารเริ่มต้นขึ้นในปี 1928 ด้วยรายงานการวิจัย[6] โดยพอล ดิแรก (Paul Dirac) ดิแรกตระหนักถึงความเป็นไปได้ของหลักสัมพัทธภาพของเขาเวอร์ชันสมการคลื่นชเรอดิงเงอร์ สำหรับอิเล็กตรอนที่คาดการณ์ถึงการมีอยู่ของ แอนติอิเล็กตรอน ซึ่งถูกค้นพบโดย คาร์ล ดี แอนเดอสัน (Carl D. Anderson) ในปี 1932 และตั้งชื่อว่าโพสิตรอน (ศัพท์ย่อของ"อิเล็กตรอนบวก") แม้ว่า โดยส่วนตัวดิแรกเองจะไม่ได้ใช้คำเรียกว่าปฏิสสารก็ตาม แต่มันก็เพียงพอกับการใช้เรียกคุณสมบัติตามธรรมชาติของแอนติอิเล็กตรอน (antielectron) แอนติโปรตอน (antiproton) ฯลฯ[7] ตารางธาตุที่สมบูรณ์ของปฏิสสารได้ถูกสร้างขึ้นโดยชาร์ล ฌาแน (Charles Janet) ในปี 1929 [8]
สัญลักษณ์
[แก้]วิธีการหนึ่งที่จะแสดงถึงปฏิยานุภาคคือการเพิ่มแถบขีดเหนือสัญลักษณ์แทนอนุภาคปกติ ตัวอย่างเช่น อนุภาคโปรตอนและแอนติโปรตอนจะแสดงเป็น และ ตามลำดับ กฎเกณฑ์เดียวกันนี้ได้ถูกประยุกต์ใช้ร่วมกันกับอนุภาคใด ๆ โปรตอนถูกสร้างขึ้นจากควาร์กแบบ , ดังนั้นแอนติโปรตอนจึงต้องสร้างขึ้นมาจากแอนติควาร์กแบบ
จุดกำเนิดและความไม่สมมาตร
[แก้]สสารเกือบทั้งหมดที่สังเกตได้จากโลกดูเหมือนว่าจะทำจากสสารมากกว่าปฏิสสาร ถ้ามีปฏิสสารครอบครองอาณาบริเวณพื้นที่ของอวกาศ รังสีแกมมาที่ถูกผลิตขึ้นในปฏิกิริยาการประลัยตามแนวเขตแดนพื้นที่ระหว่างสสารและปฏิสสารจะต้องถูกตรวจพบ [9]
ปฏิยานุภาคจะถูกสร้างขึ้นทุกที่ในจักรวาลที่ซึ่งมีการชนกันของอนุภาคพลังงานสูงเกิดขึ้น รังสีคอสมิกพลังงานสูงจะส่งผลกระทบต่อชั้นบรรยากาศของโลก (หรือสสารอื่นใดในระบบสุริยะ) การถูกสร้างขึ้นในจำนวนทุก ๆ นาทีของปฏิยานุภาคจะส่งผลให้เกิดพลังไอพ่นของอนุภาค (particle jets), ซึ่งจะถูกประลัยได้ทันทีโดยการสัมผัสกับสสารที่อยู่ใกล้เคียง ในทำนองเดียวกันพวกมันอาจจะเกิดขึ้นในอาณาบริเวณเช่นใจกลางของกาแลกซี่ทางช้างเผือกและกาแลกซี่อื่น ๆ , ที่มีพลังงานจำนวนมากเกิดขึ้นที่เป็นเหตุการณ์ท้องฟ้า (โดยส่วนใหญ่เป็นอันตรกิริยาระหว่างพลังเจ็ทเชิงสัมพัทธ์กับมวลสารระหว่างดาว) การปรากฏตัวของปฏิสสารส่งผลทำให้สามารถถูกตรวจพบได้โดยรังสีแกมมาทั้งสองที่ถูกสร้างขึ้นอยู่ตลอดเวลาที่เกิดจากการประลัยของโพสิตรอนกับสสารที่อยู่บริเวณใกล้เคียง ความถี่และความยาวคลื่นของโฟตอนรังสีแกมมาบ่งชี้ว่าโฟตอนรังสีแกมมาแต่ละอนุภาคมีพลังงาน 511 keV (ตัวอย่างเช่น มวลนิ่งของอิเล็กตรอนคูณด้วย c 2)
จากการสังเกตการณ์ล่าสุดโดยดาวเทียม INTEGRAL ขององค์การอวกาศยุโรป อาจอธิบายที่มาของเมฆยักษ์ของปฏิสสารโดยรอบศูนย์กลางของกาแลกซี่ได้ การสังเกตการณ์แสดงให้เห็นว่าเมฆยักษ์ดังกล่าวมีลักษณะไม่สมมาตรและมีลักษณะตรงกันกับรูปแบบของระบบดาวคู่รังสีเอ็กซ์ (ระบบดาวคู่ที่ประกอบด้วยหลุมดำหรือดาวนิวตรอน), ส่วนใหญ่จะอยู่ ณ บริเวณทางด้านหนึ่งของศูนย์กลางของกาแลกซี่ทางช้างเผือก, เมื่อเหตุการณ์ที่เกิดขึ้นบนท้องฟ้าที่มีพลังงานมากเกิดขึ้น (โดยเฉพาะอย่างยิ่งการมีปฏิสัมพันธ์ของพลังไอพ่นเชิงสัมพัทธ์ (relativistic jet) กับมวลสารระหว่างดาว)
อ้างอิง
[แก้]- ↑ http://news.discovery.com/space/pamela-spots-a-smidgen-of-antimatter-110811.html
- ↑ David Tenenbaum, David, One step closer: UW-Madison scientists help explain scarcity of anti-matter, University of Wisconsin—Madison News, December 26, 2012
- ↑ Kragh, H. (2002). Quantum Generations: A History of Physics in the Twentieth Century. Princeton University Press. pp. 5–6. ISBN 978-0-691-09552-3.
- ↑ Schuster, A. (1898). "Potential Matter – A Holiday Dream". Nature. 58 (1503): 367. Bibcode:1898Natur..58..367S. doi:10.1038/058367a0. S2CID 4046342. เก็บจากแหล่งเดิมเมื่อ 10 October 2021. สืบค้นเมื่อ 31 August 2020.
- ↑ E. R. Harrison (2000-03-16). Cosmology: The Science of the Universe (2nd ed.). Cambridge University Press. pp. 266, 433. ISBN 0-521-66148-X.
- ↑ Dirac, P. A. M. (1928). "The Quantum Theory of the Electron". Proceedings of the Royal Society A. 117 (778): 610–624. Bibcode:1928RSPSA.117..610D. doi:10.1098/rspa.1928.0023. JSTOR 94981.
- ↑ Kaku, M.; Thompson, J. T. (1997). Beyond Einstein: The Cosmic Quest for the Theory of the Universe. Oxford University Press. pp. 179–180. ISBN 978-0-19-286196-2.
- ↑ Stewart, P. J. (2010). "Charles Janet: Unrecognized genius of the periodic system". Foundations of Chemistry. 12 (1): 5–15. doi:10.1007/s10698-008-9062-5. S2CID 171000209.
- ↑ E. Sather (1999). "The Mystery of the Matter Asymmetry" (PDF). Beam Line. 26 (1): 31.
อ่านเพิ่ม
[แก้]- G. Fraser (2000-05-18). Antimatter: The Ultimate Mirror. Cambridge University Press. ISBN 978-0-521-65252-0.
- Schmidt, G.R.; Gerrish, H.P.; Martin, J.J.; Smith, G.A.; Meyer, K.J. "Antimatter Production for Near-term Propulsion Applications" (PDF). คลังข้อมูลเก่าเก็บจากแหล่งเดิม (PDF)เมื่อ 6 March 2007.
แหล่งข้อมูลอื่น
[แก้]- Antimatter on In Our Time at the BBC. (listen now)
- Freeview Video 'Antimatter' by the Vega Science Trust and the BBC/OU
- CERN Webcasts (RealPlayer required)
- What is Antimatter? (from the Frequently Asked Questions at the Center for Antimatter–Matter Studies)
- Taylor, Allen (2012). "Angels and Demons". New Scientist. CERN. 214 (2871): 31. Bibcode:2012NewSc.214R..31T. doi:10.1016/S0262-4079(12)61690-X. คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 27 March 2014. FAQ from CERN with information about antimatter aimed at the general reader, posted in response to antimatter's fictional portrayal in Angels & Demons
- Antimatter at Angels and Demons, CERN
- What is direct CP-violation?
- Animated illustration of antihydrogen production at CERN from the Exploratorium.