รังสีคอสมิก

จากวิกิพีเดีย สารานุกรมเสรี
Jump to navigation Jump to search
ฟลักซ์รังสีคอสมิกเทียบกับพลังงานอนุภาค

รังสีคอสมิก (อังกฤษ: cosmic ray) เป็นรังสีพลังงานสูงอย่างยิ่งที่ส่วนใหญ่กำเนิดนอกระบบสุริยะ[1] อาจทำให้เกิดการสาดอนุภาครองซึ่งทะลุทะลวงและมีผลกระทบต่อบรรยากาศของโลกและบ้างมาถึงผิวโลกได้ รังสีคอสมิกประกอบด้วยโปรตอนและนิวเคลียสอะตอมพลังงานสูงเป็นหลัก มีที่มาลึกลับ ข้อมูลจากกล้องโทรทรรศน์อวกาศแฟร์มี (2556)[2] ถูกตีความว่าเป็นหลักฐานว่าส่วนสำคัญของรังสีคอสมิกปฐมภูมิกำเนิดจากมหานวดารา(supernova) ของดาวฤกษ์ขนาดยักษ์[3] ทว่า คาดว่ามหานวดารามิใช่แหล่งเดียวของรังสีคอสมิก นิวเคลียสดาราจักรกัมมันต์อาจผลิตรังสีคอสมิกด้วย

รังสีคอสมิกถูกเรียกว่า "รังสี" เพราะทีแรกเข้าใจผิดว่าเป็นคลื่นแม่เหล็กไฟฟ้า ในการใช้ทางวิทยาศาสตร์ทั่วไป[4] อนุภาคพลังงานสูงที่มีมวลในตัว เรียก รังสี "คอสมิก" และโฟตอน ซึ่งเป็นควอนตัมของรังสีแม่เหล็กไฟฟ้า (จึงไม่มีมวลในตัว) ถูกเรียกด้วยชื่อสามัญ เช่น "รังสีแกมมา" หรือ "รังสีเอ็กซ์" ขึ้นกับความถี่

รังสีคอสมิกดึงดูดความสนใจอย่างมากในทางปฏิบัติ เนื่องจากความเสียหายที่รังสีกระทำต่อไมโครอิเล็กทรอนิกส์ และชีวิตนอกเหนือการป้องกันจากบรรยากาศและสนามแม่เหล็ก และในทางวิทยาศาสตร์ เพราะมีการสังเกตว่า พลังงานของรังสีคอสมิกพลังงานสูงอย่างยิ่ง (ultra-high-energy cosmic rays, UHECRs) ที่มีพลังงานมากที่สุดเฉียด 3 × 1020 eV[5] หรือเกือบ 40 ล้านเท่าของพลังงานของอนุภาคที่ถูกเครื่องเร่งอนุภาคขนาดใหญ่เร่ง[6] ที่ 50 จูล[7] รังสีคอสมิกพลังงานสูงอย่างยิ่งมีพลังงานเทียบเท่ากับพลังงานจลน์ของลูกเบสบอลความเร็ว 90 กิโลเมตรต่อชั่วโมง ด้วยผลการค้นพบเหล่านี้ จึงมีความสนใจสำรวจรังสีคอสมิกเพื่อหาพลังงานที่สูงกว่านี้[8] ทว่า รังสีคอสมิกส่วนมากไม่มีพลังงานสูงสุดขีดเช่นนั้น การกระจายพลังงานของรังสีคอสมิกสูงสุดที่ 0.3 กิกะอิเล็กตรอนโวลต์ (4.8×10−11 J)[9]

ในบรรดารังสีคอสมิกปฐมภูมิซึ่งกำเนิดนอกบรรยากาศของโลก ราว 99% ของนิวเคลียส (ซึ่งหลุดจากเปลือกอิเล็กตรอนของมัน) เป็นอะตอมที่ทราบกันดี และราว 1% เป็นอิเล็กตรอนเดี่ยว (คล้ายอนุภาคบีตา) ในจำนวนนิวเคลียส ราว 90% เป็นโปรตอน คือ นิวเคลียสไฮโดรเจน 9% เป็นอนุภาคแอลฟา และ 1% เป็นนิวเคลียสของธาตุหนักกว่า[10] ส่วนน้อยมากเป็นอนุภาคปฏิสสารที่เสถียร เช่น โพสิตรอนและแอนติโปรตอน ธรรมชาติที่แน่ชัดของส่วนที่เหลือนี้เป็นขอบเขตการวิจัยที่กำลังดำเนินอยู่ การแสวงอนุภาคอย่างแข็งขันจากวงโคจรโลกยังไม่พบแอนติแอลฟา

ผล[แก้]

การเปลี่ยนแปลงเคมีบรรยากาศ[แก้]

รังสีคอสมิกทำให้โมเลกุลไนโตรเจนและออกซิเจนในบรรยากาศกลายเป็นไอออน ซึ่งนำไปสู่ปฏิกิริยาเคมีจำนวนหนึ่ง มีปฏิกิริยาหนึ่งส่งผลให้เกิดการพร่องโอโซน รังสีคอสมิกยังมีผลต่อการผลิตไอโซโทปไม่เสถียรจำนวนหนึ่งในบรรยากาศของโลกอย่างต่อเนื่อง เช่น คาร์บอน-14 ผ่านปฏิกิริยา

n + 14N → p + 14C

รังสีคอสมิกรักษาระดับคาร์บอน-14 ในบรรยากาศเกือบคงที่ (70 ตัน) เป็นเวลาอย่างน้อย 100,000 ปีที่ผ่านมา กระทั่งการเริ่มการทดสอบอาวุธนิวเคลียร์เหนือพื้นดินในช่วงต้นคริสต์ทศวรรษ 1950 เป็นข้อเท็จจริงสำคัญที่ใช้ในการหาอายุคาร์บอนรังสีในโบราณคดี

อ้างอิง[แก้]

  1. Sharma (2008). Atomic And Nuclear Physics. Pearson Education India. p. 478. ISBN 978-81-317-1924-4. 
  2. Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Celik, O.; Charles, E. และคณะ (2013-02-15). "Detection of the Characteristic Pion-Decay Signature in Supernova Remnants". Science (American Association for the Advancement of Science) 339 (6424): 807–811. Bibcode:2013Sci...339..807A. arXiv:1302.3307. doi:10.1126/science.1231160. สืบค้นเมื่อ 2013-02-14. 
  3. Ginger Pinholster (2013-02-13). "Evidence Shows that Cosmic Rays Come from Exploding Stars". http://www.aaas.org/news/releases/2013/0214_supernova_cosmicrays.shtml. 
  4. Dr. Eric Christian. "Are Cosmic Rays Electromagnetic radiation?". NASA. http://helios.gsfc.nasa.gov/qa_cr.html#em. เรียกข้อมูลเมื่อ 2012-12-11. 
  5. Nerlich, Steve (12 June 2011). "Astronomy Without A Telescope – Oh-My-God Particles". Universe Today. Universe Today. สืบค้นเมื่อ 17 February 2013. 
  6. "Facts and figures". The LHC. European Organization for Nuclear Research. 2008. http://public.web.cern.ch/public/en/lhc/Facts-en.html. เรียกข้อมูลเมื่อ 17 February 2013. 
  7. Gaensler, Brian (November 2011). "Extreme speed". COSMOS (41). 
  8. L. Anchordoqui, T. Paul, S. Reucroft, J. Swain; Paul; Reucroft; Swain (2003). "Ultrahigh Energy Cosmic Rays: The state of the art before the Auger Observatory". International Journal of Modern Physics A 18 (13): 2229. Bibcode:2003IJMPA..18.2229A. arXiv:hep-ph/0206072. doi:10.1142/S0217751X03013879. 
  9. Nave, Carl R.. "Cosmic rays". HyperPhysics Concepts. Georgia State University. http://hyperphysics.phy-astr.gsu.edu/hbase/astro/cosmic.html. เรียกข้อมูลเมื่อ 17 February 2013. 
  10. "What are cosmic rays?". NASA, Goddard Space Flight Center. http://imagine.gsfc.nasa.gov/docs/science/know_l1/cosmic_rays.html. เรียกข้อมูลเมื่อ 31 October 2012. 

แหล่งข้อมูลอื่น[แก้]