ข้ามไปเนื้อหา

ขนาด (คณิตศาสตร์)

จากวิกิพีเดีย สารานุกรมเสรี

ในทางคณิตศาสตร์ ขนาด (อังกฤษ: magnitude) คือสมบัติอย่างหนึ่งของวัตถุที่ใช้เปรียบเทียบว่า สิ่งใดใหญ่กว่าหรือเล็กกว่าสิ่งใดในวัตถุชนิดเดียวกัน ในทางเทคนิคคือการจัดอันดับของวัตถุ ในชีวิตจริงมีการใช้ขนาดในการจัดอันดับของวัตถุต่าง ๆ เช่น ความดังของเสียง (เดซิเบล) ความสว่างของดาวฤกษ์ หรือมาตราริกเตอร์บนระดับความรุนแรงของแผ่นดินไหว เป็นต้น

ชาวกรีกได้มีการแยกแยะขนาดไว้เป็นหลายประเภท รวมทั้ง

ซึ่งชาวกรีกเคยพิสูจน์ว่าสองอย่างแรกนั้นไม่เหมือนกัน หรือแม้แต่ระบบสมสัณฐาน (isomorphism) ของขนาด และพิจารณาว่าขนาดที่เป็นจำนวนลบไม่มีความหมาย และใช้ค่าศูนย์เป็นขนาดที่ต่ำที่สุด หรือน้อยกว่าขนาดทั้งหมดที่เป็นไปได้ อย่างใดอย่างหนึ่ง

จำนวนจริง

[แก้]

ขนาดของจำนวนจริงมักเรียกว่าเป็นค่าสัมบูรณ์หรือมอดุลัส (modulus) เขียนแทนด้วยสัญลักษณ์ |x| ซึ่งนิยามโดย

|x| = x, เมื่อ x ≥ 0
|x| = −x, เมื่อ x < 0

จะให้ผลลัพธ์เป็นระยะทางจากศูนย์ถึงจำนวนนั้นบนเส้นจำนวนจริง ซึ่งเป็นจำนวนบวกหรือศูนย์เสมอ ตัวอย่างเช่น ขนาดของ −5 เท่ากับ 5 เป็นต้น

จำนวนเชิงซ้อน

[แก้]

ขนาดของจำนวนเชิงซ้อน ซึ่งเรียกว่ามอดุลัสเหมือนกัน คือระยะทางจากศูนย์บนระนาบเชิงซ้อน สูตรสำหรับคำนวณนั้นเหมือนกับทฤษฎีบทพีทาโกรัส

โดยที่ ℜ (z) และ ℑ (z) คือส่วนจริงและส่วนจินตภาพของ z ตามลำดับ ตัวอย่างเช่น ขนาดของ −3 + 4i เท่ากับ 5 เป็นต้น

เวกเตอร์ในปริภูมิแบบยุคลิด

[แก้]

ขนาดของเวกเตอร์ x สำหรับจำนวนจริงในปริภูมิแบบยุคลิดn สามารถหาได้จากนอร์ม (norm) ซึ่งเป็นผลขยายมาจากระยะทางแบบยุคลิด นั่นคือรากที่สองของผลคูณจุด (dot product) ของเวกเตอร์ตัวเอง

เมื่อ x = (x1, x2, ..., xn) และบางครั้งก็มีการใช้สัญกรณ์ |x| แทนนอร์ม

ตัวอย่างเช่น ขนาดของเวกเตอร์ (4, 5, 6) เท่ากับ