ไมโครเวฟ

จากวิกิพีเดีย สารานุกรมเสรี
สเปกตรัมของคลื่นแม่เหล็กไฟฟ้า
รูปแบบเบื้องต้นของการสื่อสารไมโครเวฟ


ไมโครเวฟ (microwave) เป็นคลื่นความถี่วิทยุชนิดหนึ่งที่มีความถี่อยู่ระหว่าง 0.3GHz - 300GHz ส่วนในการใช้งานนั้นส่วนมากนิยมใช้ความถี่ระหว่าง 1GHz - 60GHz เพราะเป็นย่านความถี่ที่สามารถผลิตขึ้นได้ด้วยอุปกรณ์อิเล็กทรอนิกส์

การค้นพบ[แก้]

ในปี ค.ศ.1940 ของสองนักประดิษฐ์ชาวอังกฤษ คือ จอห์น แรนดอลล์และ เอช เอ บู๊ตได้ประดิษฐ์อุปกรณ์ที่เรียกกันว่า "แม็กนีตรอน" ใช้ผลิตพลังงานไมโครเวฟ ซึ่งเป็นการแผ่รังสีคลื่นสั้นรูปแบบหนึ่ง โดยจุดประสงค์ครั้งแรกคือ ใช้ในการปรับปรุงระบบเรดาร์ที่ใช้ในสงครามโลกครั้งที่ 2เปอร์ซี่ เลอ บารอน สเปนเซอร์ เป็นนักฟิสิกส์ที่ทำงานให้กับ บริษัท เรทีออน ผู้ผลิตอุปกรณ์เรดาร์ เขาพบว่า เมื่อเขาใช้เครื่องแม็กนีตรอน รังสีที่ได้ให้ความร้อนออกมาด้วย เขาจึงหาวิธีที่จะนำเอาความร้อนนี้มาใช้ ในไม่ช้าเขาก็ใช้แม็กนีตรอนละลายช็อกโกเล็ตและทำข้าวโพดคั่วของเขาไมโครเวฟทำให้โมเลกุลของอาหารเกิดการสั่นสะเทือน ดังนั้นอาหารจึงร้อนขึ้นและขบวนการนี้เกิดขึ้นเร็วมาก คลื่นนี้ไม่ทำให้สิ่งที่ทำจากกระดาษ กระเบื้องเคลือบ หรือแก้วร้อนขึ้น การใช้ไมโครเวฟในการปรุงอาหารนอกจากจะสะดวก ใช้เวลาสั้นลงแล้วยังประหยัดพลังงานอีกด้วยใน ค.ศ.1945 เริ่มมีการผลิตเตาไมโครเวฟออกจำหน่ายแต่ยังมีขนาดใหญ่ไม่เหมาะกับการใชในครัวทั่วไป ต้องใช้เวลาอีกนานกว่าจะสามารถพัฒนาให้มีขนาดเล็กและราคาถูกลงจึงเริ่มเป็นที่นิยมใช้ตามบ้าน

เนื่องจากความถี่ไมโครเวฟสามารถนำไปใช้งานได้กว้างขวาง

ช่วงความถี่คลื่นไมโครเวฟในงานวิทยุ[แก้]

คลื่นความถี่ไมโครเวฟสามารถแบ่งเป็นช่วงย่อยๆ ตามการกำหนดของ Radio Society of Great Britain (RSGB) ดังตารางต่อไปนี้:

Letter Designation ช่วงความถี่
L band 1 to 2 GHz
S band 2 to 4 GHz
C band 4 to 8 GHz
X band 8 to 12 GHz
Ku band 12 to 18 GHz
K band 18 to 26.5 GHz
Ka band 26.5 to 40 GHz
Q band 30 to 50 GHz
U band 40 to 60 GHz
V band 50 to 75 GHz
E band 60 to 90 GHz
W band 75 to 110 GHz
F band 90 to 140 GHz
D band 110 to 170 GHz (Hot)

ลักษณะของคลื่นวิทยุไมโครเวฟ[แก้]

เช่นเดียวกับลักษณะทั่วไปของคลื่น คลื่นวิทยุไมโครเวฟจะมีลักษณะดังต่อไปนี้

  • เดินทางเป็นเส้นตรง
  • สามารถหักเหได้ (Refract)
  • สามารถสะท้อนได้ (Reflect)
  • สามารถแตกกระจายได้ (Diffract)
  • สามารถถูกลดทอนเนื่องจากฝน (Attenuate)
  • สามารถถูกลดทอนเนื่องจากชั้นบรรยากาศ

การใช้งานวิทยุไมโครเวฟ[แก้]

คลื่นไมโครเวฟเป็นคลื่นที่มีย่านความถี่กว้างมาก และเป็นที่นิยมอย่างแพร่หลาย ทั้งงานด้านตรวจจับวัตถุเคลื่อนที่ งานสื่อสาร และงานด้านอุตสาหกรรม เป็นต้น การใช้งานคลื่นไมโครเวฟมีหลากหลายชนิด สามารถแบ่งออกได้ดังนี้

1 ระบบเชื่อมต่อสัญญาณในระดับสายตา ใช้ในงานสื่อสารโทรคมนาคมระหว่างจุดหนึ่งไปอีกจุดหนึ่ง อย่างเช่น การโทรศัพท์ทางไกล ใช้การส่งผ่านสัญญาณโทรศัพท์จากจุดหนึ่ง ไปยังสถานีทวนสัญญาณจากจุดหนึ่งและส่งผ่านสัญญาณไปเรื่อยๆ จนถึงปลายทาง และในการส่งโทรทัศน์ก็จะทำการส่งสัญญาณโทรทัศน์จากห้องส่งไปยังเครื่องส่งไมโครเวฟ ส่งไปทางสายอากาศ และแพร่กระจากคลื่นของโทรทัศน์ของสถานีนั้นๆ ระยะห่างของสถานีสัญญาณจะเป็นดังนี้ ถ้าความถี่สูงระยะห่างก็จะน้อยแต่ถ้า ความถี่ของคลื่นไมโครเวฟต่ำระยะห่างของสถานีทวนสัญญาณก็จะมาก

2 ระบบเหนือขอบฟ้า ซึ่งเป็นระบบสื่อสารไมโครเวฟที่ใช้ชั้นบรรยากาศห่อหุ้มโลก ชั้นโทรโพสเฟียร์ ช่วยในการสะท้อนและหักเหคลื่นความถี่ไมโครเวฟ ให้ไปถึงปลายทาง ให้ได้ระยะทางมากขึ้น การสื่อสารไมโครเวฟระบบนี้ไม่ค่อยนิยมใช้งาน ใช้เฉพาะในกรณีจำเป็นหรือฉุกเฉิน เช่น ในเขตที่ไม่สามารถตั้งสถานีทวนสัญญาณได้ ภูมิประเทศที่แห้งแล้งกันดาร เป็นป่าดงดิบ เป็นน้ำขวางกันและเป็นอันตราย เนื่องจากการใช้งานรูปแบบนี้สามารถทำได้ในระยะทางที่ไกลมาก ดังนั้นในการส่งคลื่นจึงทำให้คลื่นมีการ กระจัดกระจายได้ ดังนั้นจึงจำเป็นต้องใช้เครื่องส่งที่มีกำลังส่งที่สูงและสายอากาศที่รับต้องมีอัตราการขยายสัญญาณที่สูง เช่นเดียวกัน

3 ระบบดาวเทียม เป็นระบบสื่อสารไมโครเวฟที่ใช้สถานีทวนสัญญาณลอยอยู่เหนือพื้นโลกกว่า 30,000 กิโลเมตร โดยการใช้ดาวเทียมทำหน้าที่เป็นสถานีทวนสัญญาณการใช้ระบบนี้สามารถทำการสื่อสารได้ไกลมากๆ ได้ และจะนิยมใช้งานในระบบสื่อสารข้ามประเทศหรือข้ามทวีป เป็นระบบสื่อสารไมโครเวฟที่นิยมใช้งานมากอีกระบบหนึ่ง

4 ระบบเรดาร์ ระบบเรดาร์นี้เป็นการใช้คลื่นความถี่ไมโครเวฟที่ช่วยในการตรวจจับและวัดระยะทางของวัตถุต่างๆ ที่อยู่ห่างไกล และวัตถุเคลื่อนที่แบบต่าง ๆ หลักการของระบบเรดาร์คือจะส่งคลื่นไมโครเวฟออกไปจากสายอากาศในมุมแคบ และเมื่อคลื่นไมโครเวฟนั้นกระทบกับวัตถุจะทำให้สะท้อนกลับมาเข้าสายอากาศ นำสัญญาณที่รับเทียบกับสัญญาณเดิมและจะแปรค่าออกมาเป็นข้อมูลที่ต้องการ

5 ระบบเตาไมโครเวฟ ระบบนี้เป็นการส่งคลื่นไมโครเวฟ ที่มีกำลังสูงส่งในพื้นที่แคบๆ ที่ทำด้วยโลหะ คลื่นไมโครเวฟนี้ก็จะสะท้อนโลหะนั้นทำให้มีคลื่นไมโครเวฟ กระจัดกระจายอยู่พื้นที่นั้นสามารถ นำไปใช้ในการทำอาหารได้

ข้อดีในการใช้วิทยุไมโครเวฟในการสื่อสาร[แก้]

  • คุณสมบัติการกระจายคลื่นไมโครเวฟคงที่
  • ทิศทางของสายอากาศเป็นแนวพุ่งตรงไปในทิศทางที่ต้องการ
  • อัตราขยายสัญญาณของสายอากาศสูง
  • สามารถทำให้อัตราส่วนของสัญญาณต่อสัญญาณรบกวนดีขึ้น คือมีสัญญาณรบกวนเกิดขึ้นน้อย
  • สามารถส่งคลื่นได้ในย่านกว้างเพราะคลื่นมีความถี่สูงมาก
  • เครือข่ายมีความน่าเชื่อถือสูงในการใช้งาน
  • ปลอดภัยจากการเกิดภัยธรรมชาติ เช่น น้ำท่วม แผ่นดินไหว
  • การรบกวนที่เกิดจากมนุษย์ทำขึ้นมีน้อย เช่น อุบัติเหตุ การก่อสร้าง ไฟไหม้
  • การก่อสร้างทำได้ง่าย และเร็ว
  • สิ้นเปลืองค่าใช้จ่ายในการก่อสร้างน้อย ใช้ค่าใช้จ่ายน้อยแต่คุณภาพสูง

การสื่อสารไมโครเวฟ[แก้]

สถานีรับส่งสัญญาณไมโครเวฟที่ Wrights Hill เมือง Wellington ประเทศนิวซีแลนด์
โครงสร้างของParabolicReflector

การสื่อสารไมโครเวฟ วิธีที่นิยมใช้กันมากก็คือการสื่อสารในระดับสายตา ใช้ในการสื่อสารข้อมูลข่าวสารในปริมาณมากๆ เส้นทางในการสื่อสารนี้จะประมาณ 50-80 กิโลเมตร และไม่มีสิ่งกีดขวาง แต่ถ้าต้องการสื่อสารในระยะไกลกว่านี้ จะต้องมีสถานีทวนสัญญาณเพื่อ ให้รับสัญญาณและทำการขยายแล้วส่งสัญญาณต่อไป จนถึงปลายทางได้

ระบบการสื่อสารผ่านคลื่นไมโครเวฟจะมี 2 ส่วนหลัก คือ ส่วนประมวลผล และ ส่วนทำหน้าที่ส่งสัญญาณ

•  ส่วนประมวลผล จะทำหน้าที่คำนวณในเรื่องการสื่อสารโดยจะสร้างและแปลสัญญาณสื่อสาร

•  ส่วนส่งสัญญาณ จะทำหน้าที่ส่งและรับสัญญาณ อยู่บนอาคาร เช่น จารส่งสัญญาณ โดยไมโครเวฟจะใช้จานขนาดเส้นผ่าศูนย์กลาง 2 ฟุต

ไมโครเวฟนั้นจะส่งผ่านสัญญาณข้อมูลด้วยคลื่นวิทยุ ( Radio-Frequency : RF ) ซึ่งส่งผ่านระหว่างสองสถานีต้นทางและปลายทาง (แต่ละสถานีจะต้องมีทั้งส่วนประมวลผลและส่วนรับ/ส่งสัญญาณ)

สถานีทวนสัญญาณไมโครเวฟ[แก้]

สถานีทวนสัญญาณไมโครเวฟ ใช้ในการสื่อสารไมโครเวฟในระดับสายตา เนื่องจากการสื่อสารในรูปแบบนี้มีผลต่อส่วนโค้งของโลก ดังนั้นในการสื่อสารไมโครเวฟนี้จะต้องมีสถานีทวนสัญญาณในระยะทุกๆ 50-80 กม. ซึ่งสถานีทวนสัญญาณจะทำการถ่ายทอด สัญญาณจากสถานีต้นทางทำการรับสัญญาณมาและทำการขยายสัญญาณ ให้แรงขึ้นแล้วก็ทำการส่งสัญญาณต่อไปจนถึงปลายทาง

  1. สถานีทวนสัญญาณข่าวสารข้อมูล จะทำการเปลี่ยนแปลงความถี่ที่รับเข้ามาให้เหลือเพียงความถี่ ข่าวสารข้อมูลก่อน แล้วก็ทำการขยายสัญญาณให้แรงขึ้นอีกที จากนั้นก็นำไปผสมกับความถี่ไมโครเวฟความถี่ใหม่ แล้วทำการส่งออกไป ข้อดีของสถานีทวนสัญญาณรูปแบบนี้คือ สามารถดึงสัญญาณข่าวสารข้อมูลมาใช้ได้ และสามารถทำการนำข่าวสารข้อมูลใหม่แทรกเข้าไปได้ด้วย ข้อเสียของสถานีทวนสัญญาณรูปแบบนี้คือ จะเกิดสัญญาณรบกวนแทรกเข้ามา และระดับความแรงของสัญญาณข่าวสารข้อมูลไม่คงที่
  2. สถานีทวนสัญญาณความถี่ IF สถานีทวนสัญญาณรูปแบบนี้จะทำการเปลี่ยนความถี่ที่รับเข้ามาให้เป็นความถี่ IF ก่อนแล้วจึงทำการขยายสัญญาณให้แรงขึ้นอีกที จากนั้นก็ค่อยทำการผสมกับคลื่นไมโครเวฟ ความถี่ใหม่ แล้วจึงทำการส่งออกไป ข้อดีของสถานีทวนสัญญาณรูปแบบนี้คือ อัตราส่วนของสัญญาณต่อสัญญาณรบกวนดีขึ้น ระดับความแรงของสัญญาณข้อมูลข่าวสารคงที่ ข้อเสียของสถานีทวนสัญญาณรูปแบบคือ ไม่สามารถดึงสัญญาณข้อมูลข่าวสารมาใช้ได้และไม่สามารถแทรกสัญญาณข้อมูลใหม่เข้าไปได้
  3. สถานีทวนสัญญาณความถี่ RF สถานีทวนสัญญาณรูปแบบนี้ จะทำการเปลี่ยนความถี่ RF เดิมไปเป็นความถี่ RF ใหม่ โดยตรงก่อนแล้วค่อยทำการส่งออกไป ข้อดีของสถานีทวนสัญญาณรูปแบบคือ มีอัตราส่วนของสัญญาณต่อสัญญาณรบกวนดีมาก สัญญาณข้อมูลข่าวสารมีความคงที่ ข้อเสียของสถานีทวนสัญญาณรูปแบบนี้คือ มีราคาแพงมาก และยังไม่สามารถดึงสัญญาณข้อมูลข่าวสารมาใช้ได้ และยังไม่สามารถนำสัญญาณข้อมูลใหม่แทรกเข้าไปได้ และยังมีความยุ่งยากในการออกแบบวงจรอีกด้วย

เวฟไกด์[แก้]

เวฟไกด์ (Waveguide) หรือว่าท่อนำคลื่น นี้ เป็นสายส่งสัญญาณชนิดหนึ่ง-ที่ใช้ใน การส่งคลื่นไมโครเวฟ โดยทั่วไปจะมีลักษณะเป็นท่อกลม หรือท่อเหลี่ยม แล้วแต่จะทำมาจากทองแดงหรืออะลูมิเนียม ด้านในฉาบด้วยเงินเพื่อให้เป็นตัวนำที่ดี สาเหตุที่สายนำสัญญาณต้องทำเป็นท่อนี้ก็เพราะว่า คลื่นไมโครเวฟมีความถี่สูงมากจะเดินทางได้ดีที่บริเวณผิวของตัวนำถ้าหากใช้สายนำสัญญาณทั่วไปจะทำให้เกิดการสูญเสียงพลังงานไปได้ จึงต้องทำเป็นท่อเพื่อป้องกันการสูญเสียพลังงานจากผิวของสายสัญญาณ ความถี่ต่ำสุดที่สามารถใช้งานได้กับเวฟไกด์เรียกว่า ความถี่คัตออฟ ซึ่งถ้าความถี่สูงกว่าความถี่ คัตออฟ จะสามารถเดินทางไปบนเวฟไกด์ได้ ส่วนความถี่ที่ต่ำกว่านี้จะไม่สามารถเดินทางบนเวฟไกด์ได้ ในการเดินทางของคลื่นไมโครเวฟในเวฟไกด์นั้น จะเดินทางโดยการสะท้อนผนังท่อ และเดินทางไปตามความยาวของท่อนำคลื่น และความถี่ที่สูงก็สามารถเดินทางได้ไกลกว่าความถี่ที่ต่ำ

รูปแบบในการเกิดคลื่นในเวฟไกด์ ก็จะมีอยู่ 2 รูปแบบด้วยกัน คือ

  • รูปแบบสนามไฟฟ้าตัดขวาง ซึ่งเป็นรูปแบบที่ไม่มีส่วนประกอบของสนามไฟฟ้าในทิศทางการแพร่กระจายคลื่น โดยสนามไฟฟ้าจะตั้งฉากกับทิศทางการแพร่กระจายของคลื่น
  • รูปแบบสนามแม่เหล็กตัดขวาง เป็นรูปแบบที่ไม่มีส่วนประกอบของสนามแม่เหล็กในทิศทางการแพร่กระจายคลื่น โดยสนามแม่เหล็กจะตั้งฉากกับทิศทางการแพร่กระจายของคลื่นเสมอ

สายอากาศแบบฮอร์น[แก้]

สายอากาศแบบฮอร์นนี้ เป็นสายอากาศที่นิยมใช้กันมากที่สุดเพราะมีกำลังการขยายสูงประกอบด้วยท่อนำคลื่นตอนปลายเปิดกว้างออกมากกว่าปกติ การที่จะทำให้อัตราการขยายสูงนั้น ทำโดยการเพิ่มจานสะท้อนคลื่นแบบพาลาโบลา (Parabola) เข้าไปด้วย ในการใช้สายอากาศแบบฮอร์นนี้ต้องใช้ร่วมกับจานสะท้อนคลื่นแบบพาลาโบลา ที่เรียกว่า ตัวสะท้อนคลื่นพาลาโบลิก และตำแหน่งของฮอร์น ต้องวางในตำแหน่งโฟกัสของตัวสะท้อนคลื่น เพราะเป็นตำแหน่งรวมคลื่นทั้งหมด

การใช้คลื่นไมโครเวฟในงานสื่อสารมวลชน[แก้]

ปัจจุบันการสื่อสารในงานสื่อสารมวลชน จำเป็นอย่างยิ่งกับการใช้เครื่องมือ ซึ่งอุปกรณ์สื่อสารต่างๆ อาศัยคลื่นไมโครเวฟเป็นสื่อกลางในการสื่อสาร เช่น สายโคแอกเชียล สายอากาศ ดาวเทียม ซึ่งสิ่งเหล่านี้ใช้ในการส่งข้องมูลต่างๆ จึงมีความสำคัญอย่ายิ่งต่องานสื่อสารมวลชนอย่างมากเพราะการสื่อสารมวลชนในบัจจุบัน จำเป็นต้องมีการเผยแพร่และการรับข่าวสารได้อย่างรวดเร็ว เพื่อให้มีการอัปเดดข้อมูลให้สมัยตลอดเวลา

อ้างอิง[แก้]

  • Pozar, David M. (1993). Microwave Engineering Addison-Wesley Publishing Company. ISBN 0-201-50418-9.