รูปสามเหลี่ยมด้านเท่า

จากวิกิพีเดีย สารานุกรมเสรี
รูปสามเหลี่ยมด้านเท่า
Triangle.Equilateral.svg
รูปสามเหลี่ยมด้านเท่าเป็นรูปหลายเหลี่ยมปรกติ
ชนิด รูปสามเหลี่ยม,
2-ซิมเพล็กซ์
ขอบและจุดยอด 3
สัญลักษณ์ชเลฟลี {3}
ค็อกซีเตอร์-ดืยน์กิน CDel node 1.pngCDel 3.pngCDel node.png
กรุปสมมาตร D3
พื้นที่ \tfrac{\sqrt{3}}{4} a^2
มุมภายใน (องศา) 60°

รูปสามเหลี่ยมด้านเท่า คือรูปสามเหลี่ยมชนิดหนึ่งที่ด้านทั้งสามมีความยาวเท่ากัน ในเรขาคณิตแบบยุคลิด รูปสามเหลี่ยมด้านเท่าจัดเป็นรูปหลายเหลี่ยมมุมเท่า (equiangular polygon) กล่าวคือ มุมภายในแต่ละมุมของรูปสามเหลี่ยมมีขนาดเท่ากันคือ 60° ด้วยคุณสมบัติทั้งสอง รูปสามเหลี่ยมด้านเท่าจึงจัดเป็นรูปหลายเหลี่ยมปรกติ (regular polygon) และเรียกอีกชื่อหนึ่งได้ว่าเป็น รูปสามเหลี่ยมปรกติ

รูปสามเหลี่ยมด้านเท่าที่ยาวด้านละ a\,\! หน่วย จะมีส่วนสูง (altitude) เท่ากับ \frac{\sqrt{3}}{2}a หน่วย และมีพื้นที่เท่ากับ \frac{\sqrt{3}}{4}a^2 ตารางหน่วย

รูปสามเหลี่ยมด้านเท่าเป็นรูปสามเหลี่ยมที่มีความสมมาตรมากที่สุด คือมีสมมาตรแบบสะท้อนสามเส้น และสมมาตรแบบหมุนที่อันดับสามรอบศูนย์กลาง กรุปสมมาตรของรูปสามเหลี่ยมนี้จัดว่าเป็นกรุปการหมุนรูปของอันดับหก (dihedral group of order 6) หรือ D3

ทรงสี่หน้าปรกติ สร้างขึ้นจากรูปสามเหลี่ยมด้านเท่าสี่รูป

รูปสามเหลี่ยมด้านเท่าสามารถพบได้ในโครงสร้างทางเรขาคณิตอื่นๆ หลายอย่าง เช่น รูปวงกลมที่มีรัศมีเท่ากันสองวงตัดกัน โดยมีจุดศูนย์กลางอยู่บนเส้นรอบวงของอีกวงหนึ่ง ทำให้เกิดส่วนโค้งขนาดเท่ากัน และสามารถแสดงได้ด้วยรูปสามเหลี่ยมด้านเท่า รูปสามเหลี่ยมนี้ยังเป็นส่วนหนึ่งของการสร้างทรงหลายหน้า ทรงตันเพลโตสามในห้าชิ้นประกอบขึ้นจากรูปสามเหลี่ยมด้านเท่า หนึ่งในนั้นคือทรงสี่หน้าปรกติ ซึ่งประกอบด้วยหน้ารูปสามเหลี่ยมด้านเท่าทั้งสี่หน้า นอกจากนั้นรูปสามเหลี่ยมด้านเท่าสามารถนำมาเรียงติดต่อกันบนระนาบ จนเกิดเป็นรูปแบนราบสามเหลี่ยม (triangular tiling)

การหารูปสามเหลี่ยมด้านเท่าที่เกี่ยวข้องกับรูปสามเหลี่ยมใดๆ สามารถหาได้จากทฤษฎีบทสามส่วนของมอร์ลีย์ (Morley's trisector theorem)

การสร้างรูปสามเหลี่ยมด้านเท่า[แก้]

การสร้างรูปสามเหลี่ยมด้านเท่า

รูปสามเหลี่ยมด้านเท่าสามารถสร้างขึ้นได้ง่ายด้วยสันตรงและวงเวียน เริ่มต้นจากวาดวงกลมรัศมี r หน่วยด้วยวงเวียน จากนั้นวาดวงกลมอีกวงหนึ่งด้วยรัศมีเท่ากัน โดยให้จุดศูนย์กลางของวงใหม่อยู่บนเส้นรอบวงของวงกลมแรก วงกลมทั้งสองจะตัดกันสองจุด ลากส่วนของเส้นตรงเชื่อมจุดศูนย์กลางทั้งสอง และลากจากจุดศูนย์กลางทั้งสองไปยังจุดตัดจุดหนึ่งบนเส้นรอบวง ส่วนของเส้นตรงทั้งสามเส้นจะประกอบกันเป็นรูปสามเหลี่ยมด้านเท่ายาวด้านละ r หน่วย

รูปสามเหลี่ยมฮีโรเนียนคล้ายด้านเท่า[แก้]

รูปสามเหลี่ยมฮีโรเนียนหมายถึงรูปสามเหลี่ยมที่มีความยาวของด้านและพื้นที่เป็นจำนวนตรรกยะ เนื่องจากรูปสามเหลี่ยมด้านเท่าที่มีความยาวของด้านเป็นจำนวนตรรกยะ จะให้พื้นที่เป็นจำนวนอตรรกยะ ดังนั้นรูปสามเหลี่ยมด้านเท่าจึงไม่มีทางเป็นฮีโรเนียน อย่างไรก็ตาม มีลำดับของรูปสามเหลี่ยมฮีโรเนียนชุดหนึ่งและเป็นชุดเดียวที่ "คล้ายด้านเท่า" เพราะว่าด้านทั้งสามที่มีความยาวเท่ากับ n − 1, n, n + 1 และเป็นจำนวนเต็ม จากตัวอย่างต่อไปนี้เป็นรูปสามเหลี่ยมฮีโรเนียนคล้ายด้านเท่า

ความยาวของด้าน พื้นที่
n − 1 n n + 1
3 4 5 6
13 14 15 84
51 52 53 1170
193 194 195 16296

ลำดับจำนวนของ n สามารถหาได้จากการคูณจำนวนก่อนหน้าด้วย 4 และลบด้วยสองจำนวนก่อนหน้า นั่นคือ

q_n = 4q_{n-1} - q_{n-2}\,\!

ตัวอย่างเช่น 52 = 4 × 14 − 4 และ 194 = 4 × 52 − 14 เป็นต้น ลำดับจำนวนนี้สามารถสร้างขึ้นจากผลเฉลยของสมการของเพลล์ x^2 - 3y^2 = 1 ซึ่งถูกถ่ายทอดมาจากการขยายเศษส่วนต่อเนื่องของ √3 [1]

อ้างอิง[แก้]

  1. Takeaki Murasaki (2004) , On the Heronian Triple (n+1, n, n−1) , Sci. Rep. Fac. Educ., Gunma Univ. 52, 9-15.

ดูเพิ่ม[แก้]

แหล่งข้อมูลอื่น[แก้]