น้ำขึ้นจากพายุ

จากวิกิพีเดีย สารานุกรมเสรี
ผลกระทบของน้ำขึ้นจากพายุ

น้ำขึ้นจากพายุ[1] (อังกฤษ: storm surge หรือ tidal surge) คือคลื่นที่เกิดจากการยกตัวขึ้นของน้ำทะเลนอกชายฝั่งด้วยอิทธิพลของความกดอากาศต่ำและอิทธิพลของพายุหมุนเขตร้อน น้ำขึ้นจากพายุขั้นตอนแรกเกิดจากลมความเร็วสูงที่พัดผลักดันผิวมหาสมุทร ลมจะทำให้น้ำยกตัวสูงขึ้นจากระดับน้ำทะเลปกติ ขั้นตอนที่สองคือความกดอากาศต่ำที่ศูนย์กลางพายุ (ตาพายุ) มีผลเพิ่มยกระดับน้ำขึ้นอีกเล็กน้อย และอีกสาเหตุคือชั้นความลึก (bathymetry) ของน้ำทะเล ผลกระทบรวมจากปรากฏการณ์ความกดอากาศต่ำร่วมกับการพัดของลมพายุเหนือทะเลน้ำตื้นนี้เองที่เป็นต้นเหตุของอุทกภัยจากน้ำขึ้นจากพายุ คำว่า "storm surge" ในภาษาอังกฤษยังมีคำอื่น ๆ ที่ใช้แบบไม่เป็นทางการ (ไม่ใช่ศัพท์ทางวิทยาศาสตร์) คือ "storm tide" (น้ำขึ้นหนุนจากพายุ) นั่นเพราะมันเกี่ยวโยงกับการยกขึ้นของน้ำทะเลจากพายุ, ภาวะน้ำขึ้นหนุน (plus tide), คลื่นเคลื่อนยกตัว (wave run-up), และการท่วมหลากของน้ำจืด เมื่อเอ่ยถึงอ้างอิงความสูงของน้ำขึ้นจากพายุ สิ่งสำคัญคือความชัดเจนของจุดอ้างอิง จากรายงานพายุหมุนเขตร้อนของศูนย์พายุหมุนแห่งชาติ (National Hurricane Center, NHC) รายงานอ้างอิงน้ำขึ้นจากพายุจากความสูงของระดับน้ำที่สูงเหนือจากระดับน้ำขึ้นของอุตุพยากรณ์ และความสูงของระดับน้ำที่ถูกพายุยกขึ้นเหนือจากสถิติระดับน้ำทะเลที่อ้างอิงใน พ.ศ. 2472 (NGVD-29)

กลไก[แก้]

ภาพกราฟิกแสดงน้ำขึ้นจากพายุ

อิทธิพลที่มีผลต่อการการเปลี่ยนแปลงของระดับน้ำในระหว่างเกิดพายุมีอย่างน้อย 5 อิทธิพล ได้แก่ อิทธิพลความกดอากาศ, อิทธิพลโดยตรงจากลมพายุ, อิทธิพลของการหมุนตัวของโลก, อิทธิพลของคลื่น, และอิทธิพลของปริมาณน้ำฝนที่ตก[2]

อิทธิพลความกดอากาศของพายุหมุนเขตร้อนจะทำให้ระดับของน้ำในทะเลเปิดยกตัวสูงขึ้นในเขตที่บรรยากาศมีความกดอากาศต่ำ และลดระดับต่ำลงในเขตบรรยากาศมีความกดอากาศสูง ระดับน้ำที่ยกตัวสูงขึ้นจะแปรผกผันกับความกดอากาศที่ต่ำลง เพื่อที่จะทำให้ความกดโดยรวมที่ระนาบของใต้ผิวน้ำคงที่ ผลกระทบนี้ทำให้ประมาณได้ว่าระดับน้ำทะเลจะเพิ่มสูงขึ้น 10 มิลลิเมตร (0.4 นิ้ว) ต่อทุก ๆ 1 มิลลิบาร์ที่ลดลงของความกดอากาศ[2]

ความแรงที่พื้นผิวลมเป็นสาเหตุโดยตรงของความสูงชันของพายุลม ปรากฏการณ์นี้รู้จักกันในชื่อ "เกลียวเอ็กมาน" (Ekman spiral) มีข้อเท็จจริงที่ว่าความกดดันของลม (wind stress) เป็นสาเหตุของปรากฏการณ์การก่อตัวของลม นั่นคือมีแนวโน้มที่ระดับน้ำจะยกเพิ่มในด้านทิศเดียวกับกระแสลมที่พัดเข้าฝั่ง และระดับน้ำจะลดลงในด้านตรงกันข้าม เพราะเหตุนี้จึงเป็นธรรมดาที่พายุจะพัดน้ำซัดอ่าวในทิศทางไปของพายุ เพราะเหตุว่าเกลียวเอ็กมานมีผลจากการแผ่ในแนวฉากของลมที่ผ่านน้ำ และผลกระทบนี้จะแปรผกผันกับความลึกของน้ำ อิทธิพลความดันและการก่อตัวของลมในทะเลเปิดจะผลักดันน้ำเข้าสู่อ่าวในแนวเดียวกับอิทธิพลของน้ำขึ้นน้ำลง

อิทธิพลของการหมุนของโลกเป็นสาเหตุของปรากฏการณ์คอริออลิส (Coriolis effect) ซึ่งปรากฏการณ์นี้จะทำให้ทิศทางกระแสน้ำเบี่ยงโค้งไปทางขวาในซีกโลกเหนือ และเบี่ยงโค้งไปทางซ้ายในซีกโลกใต้จากอิทธิพลของการหมุนของโลก เมื่อโค้งของกระแสน้ำเข้าพุ่งปะทะกับชายฝั่งในแนวตั้งฉากจะไปเพิ่มขยายคลื่นที่ยกตัวให้เพิ่มขึ้น และหากโค้งของกระแสน้ำหันออกจากชายฝั่งมีผลให้คลื่นที่ยกตัวนั้นลดลง

อิทธิพลของคลื่น ขณะที่คลื่นได้รับกำลังจากลม โดยเฉพาะจากพลังของลมพายุ ลมที่มีพลังจะยกคลื่นให้ใหญ่และแรงในทิศทางเดียวกันกับแนวการเคลื่อนที่ของลม แม้กระนั้นก็จะเห็นผลการเปลี่ยนแปลงที่ผิวคลื่นเพียงเล็กน้อยในทะเลเปิด (ทะเลลึก) แต่มันจะมีผลให้คลื่นขยายตัวใหญ่และแรงขึ้นคลื่นนั้นเมื่อเข้าใกล้ชายฝั่ง เมื่อแนวคลื่นที่กำลังแตกตัวขนานกับหาดมันนำน้ำจำนวนมากซัดตรงเข้าสู่ฝั่ง ขณะที่คลื่นแตกตัวอนุภาคของน้ำที่เคลื่อนเข้าฝั่งนั้นมีโมเมนตัมจำนวนมาก จนอาจซัดกระเซ็นขึ้นไปตามความชันของหาดจนสูงเหนือระดับน้ำทะเลและคลื่นที่ตามมาในลูกที่สองถูกซัดสูงขึ้นก่อนที่มันจะแตกกระจาย

ปริมาณน้ำฝนที่ตกมีอิทธิพลมากตรงบริเวณชะวากทะเล (บริเวณที่น้ำจืดกับน้ำเค็มบรรจบกัน) ในพื้นที่เปิดเฮอริเคนสามารถสร้างปริมาณน้ำฝนได้ถึง 12 นิ้วใน 24 ชั่วโมง และอาจจะสูงกว่าในพื้นที่ปิด ผลที่ตามมาคือ สันปันน้ำ (watersheds) (ร่องเขาที่เป็นแนวร่องน้ำ) น้ำจะไหลบ่าอย่างเร็วระบายสู่แม่น้ำ นี่ทำให้ระดับน้ำเพิ่มสูงในระดับสูงสุดของระดับน้ำขึ้นบริเวณปากแม่น้ำ เป็นเพราะพายุขับดันคลื่นยกตัวจากมหาสมุทรและน้ำฝนที่ไหลมาจากชะวากทะเล

การวัดการยกตัว[แก้]

การวัดการยกตัวสามารถทำได้โดยตรงที่สถานีวัดน้ำขึ้นน้ำลงชายฝั่ง (coastal tidal stations) โดยวัดความแตกต่างของระดับน้ำขึ้นพยากรณ์การระดับยกตัวที่สังเกตได้[3] ข้อสารสนเทศนี้สามารถดูในขณะเกิดจริงได้ที่เว็บไซต์น้ำขึ้นน้ำลงและกระแสน้ำของ NOAA (NOAA Tides and Currents website) ตลอดเวลาที่ทำการรายงาน[4]

การวัดการยกตัวอีกวิธีหนึ่งที่เริ่มนำมาใช้โดย NHC เมื่อ พ.ศ. 2548 โดยทีมงาน USGS ที่ใช้การติดจั้งตัวแปรสัญญาณความกดอากาศไปตามชายฝั่งทะเลก่อนที่พายุหมุนจะมาถึง ซึ่งเป็นการทดลองใช้ครั้งแรกกับพายุหมุนริตา (Hurricane Rita) [5] กรรมวิธีนี้ได้นำมาตรวจสอบความถูกต้องกับกรรมวิธีอื่นที่ใช้กับริตาด้วย และต่อมาได้ใช้กีบพายุหมุนเออร์เนสโกเมื่อปี พ.ศ. 2549 อีกครั้ง เครื่องรับรู้ประเภทนี้สามารถนำไปติดตั้งไว้ในตำแหน่งที่จะถูกน้ำท่วมโดยสามารถวัดความสูงของน้ำส่วนบนได้[6]

บันทึก[แก้]

น้ำขึ้นจากพายุที่สูงที่สุดที่มีบันทึกในประวัติศาสตร์เกิดจากพายุหมุนมาฮินา (Cyclone Mahina) ที่อ่าวแบเทิสต์ (Bathurst Bay) ประเทศออสเตรเลีย เมื่อปี พ.ศ. 2442 ซึ่งประมาณว่าสูงถึง 13 เมตร แต่งานวิจัยที่ตีพิมพ์เมื่อ พ.ศ. 2543 ให้ข้อสังเกตว่าสาเหตุเหตุหลัก ๆ น่าจะเกิดจากคลื่นเคลื่อนยกตัวมากกว่าเนื่องจากความชันของพื้นใต้ชายฝั่งทะเล[7] บันทึกของน้ำขึ้นจากพายุที่สูงที่สุดเกิดจากพายุหมุนแคทรินาเมื่อ พ.ศ. 2548 ซึ่งทำให้คลื่นยกตัวสูงขึ้นถึงระดับ 7.6 เมตร[8][9] รอบ ๆ อ่าวเซนต์หลุยส์ รัฐมิสซิสซิปปี, ในชุมชนเวฟแลนด์, ตัวอ่าวเซนต์หลุยส์, ไดมอนด์เฮด, และช่องแคบคริสเตียน โดยมีคลื่นยกตัวสูงถึง 8.5 เมตรที่ช่องแคบคริสเตียน[10] บันทึกน้ำขึ้นจากพายุอีกรายหนึ่งเกิดในบริเวณเดียวกันจากพายุหมุนคามิลเมื่อเดือนสิงหาคม พ.ศ. 2512 โดยมีคลื่นยกตัวสูงสุดถึง 7.5 เมตรจากระดับน้ำทะเลสูงสุดซึ่งเกิดที่ช่องแคบคริสเตียนเช่นกัน [11] น้ำขึ้นจากพายุที่เลวร้ายที่สุดในแง่ของการเสียชีวิตของผู้คนเกิดจากพายุไต้ฝุ่นโภลา (Bhola cyclone) เมื่อ พ.ศ. 2513 ที่อ่าวเบงกอลและโดยทั่วไป อ่าวเบงกอล ซึ่งเป็นพื้นที่เสี่ยงภัยที่เกิดภัยจากน้ำขึ้นจากพายุชุกมากกว่าพื้นที่อื่น ๆ

เหตุการณ์น้ำขึ้นจากพายุในประเทศไทย[แก้]

ในอดีตประเทศไทยก็เคยเกิดปรากฏการณ์น้ำขึ้นจากพายุ เมื่อวันที่ 25-26 ตุลาคม พ.ศ. 2505 ขึ้นในภาคใต้ของประเทศไทย แหลมตะลุมพุก อำเภอปากพนัง จังหวัดนครศรีธรรมราช จากพายุหมุนเขตร้อนแฮเรียต มีเส้นผ่านศูนย์กลางขนาด 300 กิโลเมตร ความเร็วลม 180 - 200 กิโลเมตรต่อชั่วโมง ความเร็วในการเคลื่อนที่ 92.622 กิโลเมตรต่อชั่วโมง เกิดคลื่นยักษ์สูงประมาณยอดต้นสน (20 เมตร) สร้างความเสียหายให้ 9 จังหวัดในภาคใต้เป็นอย่างมาก สถานที่ราชการ อาคารบ้านเรือน โรงเรียน วัด ถูกพายุพัดพังระเนระนาด การไฟฟ้าและสถานีวิทยุตำรวจเสียหายหนัก ไม่สามารถติดต่อกันได้ เรือที่ออกทะเลเสียหายมากมาย ต้นยาง ต้นมะพร้าว และต้นไม้อื่น ๆ ล้มพินาศมหาศาล สวนยางนับแสน ๆ ต้นโค่นล้มขวางเป็นสิบ ๆ กิโลเมตร มีผู้เสียชีวิต 911 คน, สูญหาย 142 คน, บาดเจ็บสาหัส 252 คน,ไม่มีที่อยู่อาศัย 10,314 คน, บ้านเสียหาย 42,409 หลังคาเรือน,โรงเรียน 435 หลัง

สโลช (SLOSH)[แก้]

ตัวอย่างการเดินแบบจำลองสโลช (SLOSH run)

ศูนย์พายุหมุนแห่งชาติได้พยากรณ์ไว้ว่าน้ำขึ้นจากพายุโดยใช้แบบจำลองสโลช หรือ SLOSH ซึ่งย่อมาจาก "น้ำขึ้นจากพายุในทะเลสาบและบนแผ่นดิน" ในภาษาอังกฤษ คือ Lake and Overland Surges from Hurricanes. แบบจำลองนี้มีความแม่นยำภายใน 20 percent.[12] ข้อมูลสโลชรับเข้า (input) รวมถึงความกดอากาศส่วนกลางของพายุหมุนเขตร้อน, ขนาดของพายุ, การเคลื่อนตัวของพายุ, เส้นทางการเคลื่อนตัว, และความเร็วลมคงที่สูงสุด นอกจากนี้ยังต้องนำเอาลักษณะภูมิประเทศท้องถิ่น, การหันเหทิศทางของอ่าวและแม่น้ำ, ความลึกของก้นทะเล, การขึ้นลงเชิงดาราศาสตร์ของน้ำ (น้ำขึ้นน้ำลง) , รวมทั้งรูปโฉมทางกายภาพอื่น ๆ เข้ามานับร่วมกันเพื่อการกำหนดกริดหรือตารางล่วงหน้าที่เรียกว่า "แอ่งสโลช" (SLOSH basin) แล้วจึงนำแอ่งสโลชมาทับซ้อนสำหรับเส้นแนวชายฝั่งทะเลด้านใต้และตะวันออกของแผ่นทวีปอเมริกา[13] ในการจำลองพายุบางครั้งอาจใช้แอ่งสโลชมากว่า 1 แอ่ง เช่นการเดินแบบจำลองสโลชแคทรินาซึ่งใช้ทั้งแอ่งทะเลสาบพอนชาร์เทรน/นิวออร์ลีนส์ และ แอ่งมิสซิสซิบปีซาวด์ร่วมกันเพื่อใช้กับการขึ้นฝั่งของพายุ (landfall) ของอ่าวเม็กซิโก

การบรรเทา[แก้]

แม้การสำรวจทางอุตุนิยมจะเตือนภัยพายุหมุนหรือพายุร้ายแรงทั่ว ๆ ไปแล้วก็ตาม ในบางกรณีบางพื้นที่ที่มีความเสียงต่อน้ำท่วมชายฝั่งสูงเฉพาะที่บางแห่งจะมีการเตือนเกี่ยวกับน้ำขึ้นจากพายุเฉพาะเป็นครั้ง ๆ อยู่ด้วยเหมือนกัน ได้มีการปฏิบัติจริงอยู่แล้วหลายแห่ง เช่นประเทศเนเธอร์แลนด์[14] สเปน,[15][16] สหรัฐ,[17][18] และ สหราชอาณาจักร.[19]

กรรมวิธีเพื่อป้องน้ำขึ้นจากพายุเริ่มขึ้นหลังจากเหตุการณ์น้ำท่วมใหญ่ทะเลเหนือ เมื่อ พ.ศ. 2496 โดยการสร้างเขื่อนและประตูกั้นน้ำท่วม (สันดอนกั้นน้ำขึ้นจากพายุ) ปกติจะเปิดให้น้ำและเรือผ่านเข้าออก แต่จะปิดเมื่อมีทีท่าว่าอาจถูกคุกคามจากน้ำขึ้นจากพายุ สันดอนกั้นพายุยกที่สำคัญได้แก่ โอสเตอร์สแค็ลเดอเกริง (Oosterscheldekering) และมาสลันต์เกริง (Maeslantkering) ในเนเธอร์แลนด์ซึ่งเป็นส่วนหนึ่งของโครงการงานดินดอนสามเหลี่ยม (Delta Works project) และสันดอนเทมส์ (Thames Barrier) ที่ใช้ป้องกันกรุงลอนดอน

ดูเพิ่ม[แก้]

หมายเหตุ[แก้]

  1. ราชบัณฑิตยสถาน. พจนานุกรมศัพท์ภูมิศาสตร์ ฉบับราชบัณฑิตยสถาน. พิมพ์ครั้งที่ 4. กรุงเทพฯ : ราชบัณฑิตยสถาน, 2549, หน้า 504.
  2. 2.0 2.1 Harris 1963
  3. John Boon (2007). "Ernesto: Anatomy of a Storm Tide" (PDF). Virginia Institute of Marine Science, College of William and Mary. สืบค้นเมื่อ 2008-08-11. 
  4. National Ocean Service (2008). "Tide Data - Station Selection". National Oceanic and Atmospheric Administration. สืบค้นเมื่อ 2008-08-11. 
  5. U.S. Geological Survey (2006-10-11). "Hurricane Rita Surge Data, Southwestern Louisiana and Southeastern Texas, September to November 2005". U.S. Department of the Interior. สืบค้นเมื่อ 2008-08-11. 
  6. Automated (2008). "U20-001-01-Ti: HOBO Water Level Logger Specification". Onset Corp. สืบค้นเมื่อ 2008-08-10. 
  7. Jonathan Nott and Matthew Hayne (2000). ~How_high_was_the_storm_surge_from_Tropical_Cyclone_Mahina.pdf/$file/How_high_was_the_storm_surge_from_Tropical_Cyclone_Mahina.pdf "How high was the storm surge from Tropical Cyclone Mahina? North Queensland, 1899" (PDF). Emergency Management Australia. สืบค้นเมื่อ 2008-08-11. 
  8. FEMA (2005-11-01). "Mississippi Hurricane Katrina Surge Inundation and Advisory Base Flood Elevation Map Panel Overview" (PDF). Federal Emergency Management Agency (FEMA). สืบค้นเมื่อ 2008-08-11. 
  9. FEMA (2006-05-30). "Hurricane Katrina Flood Recovery (Mississippi)". Federal Emergency Management Agency (FEMA). สืบค้นเมื่อ 2008-08-11. 
  10. Knabb, Richard D; Rhome, Jamie R.; Brown, Daniel P (2005-12-20; updated 2006-08-10). "Tropical Cyclone Report: Hurricane Katrina: 23-30 August 2005" (PDF). National Hurricane Center. สืบค้นเมื่อ 2008-10-11. 
  11. Simpson, 1969
  12. National Hurricane Center (2008). "SLOSH Model". National Oceanic and Atmospheric Administration. สืบค้นเมื่อ 2008-08-10. 
  13. NOAA (1999-04-19). "SLOSH Model Coverage". National Oceanic and Atmospheric Administration. สืบค้นเมื่อ 2008-08-11. 
  14. Rijkswaterstaat (2008-07-21). "Storm Surge Warning Service". สืบค้นเมื่อ 2008-08-10. 
  15. Ports of the State (1999-03-01). "Storm surge forecast system". Government of Spain. สืบค้นเมื่อ 2007-04-14. 
  16. Puertos del Estado (1999-03-01). "Sistema de previsión del mar a corto plazo" (ใน Spanish). Gobierno de España. สืบค้นเมื่อ 2008-08-10. 
  17. Stevens Institute of Technology (2008-08-10). "Storm Surge Warning System". New Jersey Office of Emergency Management. สืบค้นเมื่อ 2008-08-11. 
  18. Donna Franklin (2008-08-11). "NWS StormReady Program, Weather Safety, Distaster, Hurricane, Tornado, Tsunami, Flash Flood...". National Weather Service. สืบค้นเมื่อ 2008-08-11. 
  19. National Flood Risk Systems Team (2007-04-14). "Current Flooding Situation". Environment Agency. สืบค้นเมื่อ 2007-07-07. 

อ้างอิง[แก้]

  • Anthes, Richard A. (1982). "Tropical Cyclones; Their Evolution, Structure and Effects, Meteorological Monographs". American Meteorological Society (Ephrata, PA.) 19 (41): 208. 
  • Cotton, W.R. (1990). Storms. Fort Collins, Colorado: *ASTeR Press. p. 158. ISBN 0962598607. 
  • Dunn, Gordon E.; Banner I. Miller (1964). Atlantic Hurricanes. Baton Rouge, LA: Louisiana State University Press. p. 377. 
  • Finkl, C.W. Jnr. (1994). "Disaster Mitigation in the South Atlantic Coastal Zone (SACZ) : A Prodrome for Mapping Hazards and Coastal Land Systems Using the Example of Urban subtropical Southeastern Florida. In: Finkl, C.W., Jnr. (ed.) , Coastal Hazards: Perception, Susceptibility and Mitigation.". Journal of Coastal Research (Charlottesville, Virginia: Coastal Education & Research Foundation) (Special Issue No. 12): 339–366. 
  • National Hurricane Center; Florida Department of Community Affairs, Division of Emergency Management (1995). Lake Okeechobee Storm Surge Atlas for 17.5' & 21. 5' Lake Elevations. Ft. Myers, Florida: Southwest Florida Regional Planning Council. 
  • Gornitz, V.; R.C. Daniels, T.W. White, and K.R. Birdwell (1994). "The development of a coastal risk assessment database: Vulnerability to sea level rise in the U.S. southeast". Journal of Coastal Research (Coastal Education & Research Foundation) (Special Issue No. 12): 327–338. 
  • Granthem, K. N. (1953-10-01). "Wave Run-up on Sloping Structures". Transactions of the American Geophysical Union 34 (5): 720–724. 
  • Harris, D.L. (1963). "Characteristics of the Hurricane Storm Surge" (PDF). Technical Paper No. 48 (Washington, D.C.: U.S. Dept. of Commerce, Weather Bureau): 139. 
  • Hebert, Paul J.; Taylor, Glenn (1983). "The Deadliest, Costliest, and Most Intense United States Hurricanes of This Century (and other Frequently Requested Hurricane Facts)" (PDF). NOAA Technical Memorandum NWS NHC 31 (Miami, Florida: National Hurricane Center): 33. 
  • Hebert, P.J.; Jerrell, J., Mayfield, M. (1995). "The Deadliest, Costliest, and Most Intense United States Hurricanes of This Century (and other Frequently Requested Hurricane Facts)". NOAA Technical Memorandum NWS NHC 31 (Coral Gables, Fla., In: Tait, Lawrence, (Ed.) Hurricanes...Different Faces In Different Places, (proceedings) 17th Annual National Hurricane Conference, Atlantic City, N.J.): 10–50. 
  • Jarvinen, B.R.; Lawrence, M.B. (1985). "An evaluation of the SLOSH storm-surge model". American Meteorological Society Bulletin 66 (11): 1408–1411. 
  • Jelesnianski, Chester P. (1972). "SPLASH (Special Program To List Amplitudes of Surges From Hurricanes) I. Landfall Storms". NOAA Technical Memorandum NWS TDL-46 (Silver Spring, Maryland: National Weather Service Systems Development Office): 56. 
  • Jelesnianski, Chester P.; Jye Chen, Wilson A. Shaffer (1992). "SLOSH: Sea, Lake, and Overland Surges from Hurricanes". NOAA Technical Report NWS 48 (Silver Spring, Maryland: National Weather Service): 71. 
  • Lane, E.D. (1981). Environmental Geology Series, West Palm Beach Sheet; Map Series 101. Tallahassee, Florida: Florida Bureau of Geology. p. 1. 
  • Murty, T.S.; Flather, R.A. (1994). "Impact of Storm Surges in the Bay of Bengal. In: Finkl, C.W., Jnr. (ed.) , Coastal Hazards: Perception, Susceptibility and Mitigation". Journal of Coastal Research (Special Issue No. 12): 149–161. 
  • United States National Weather Service (1993). Hurricane!: A Familiarization Booklet. NOAA PA 91001: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Weather Service. p. 36. 
  • Newman, C.J.; BR Jarvinen, CJ McAdie, JD Elms (1993). Tropical Cyclones of the North Atlantic Ocean, 1871-1992. Ashville, North Carolina and National Hurricane Center, Coral Gables, Florida: National Climatic Data Center in cooperation with the National Hurricane Center. p. 193. 
  • Sheets, Dr. Robert C. (1995). Stormy Weather, In: Tait, Lawrence, (Ed.) Hurricanes... Different Faces In Different Places, (Proceedings) 17th Annual National Hurricane Conference. Atlantic City, N.J. pp. 52–62. 
  • Simpson, R.H.; Arnold L. Sugg and Staff (1970-04-01). "The Atlantic Hurricane Season of 1969" (PDF). Monthly Weather Review (Boston, Massachusetts: American Meteorological Society) 98 (4). doi:10.1175/1520-0493 (1970) 098<0293:TAHSO>2.3.CO;2 (inactive 2008-08-11) Check |doi= value (help). สืบค้นเมื่อ 2008-08-11. 
  • Simpson, R.H. (1971). "A Proposed Scale for Ranking Hurricanes by Intensity". (Speech)Minutes of the Eighth NOAA, NWS Hurricane Conference (Miami, Florida). 
  • Tannehill, I.R. (1956). Hurricanes. Princeton, New Jersey: Princeton University Press. p. 308. 
  • Will, Lawrence E. (1978). Okeechobee Hurricane; Killer Storms in the Everglades. Belle Glade, Florida: Glades Historical Society. p. 204. 

แหล่งข้อมูลอื่น[แก้]