กฎการเคลื่อนที่ของดาวเคราะห์

จากวิกิพีเดีย สารานุกรมเสรี
ภาพแสดงกฎ 3 ข้อของเคปเลอร์ที่มีวงโคจรดาวเคราะห์ 2 วง (1) วงโคจรเป็นวงรีด้วยจุดโฟกัส f1 และ f2 สำหรับดาวเคราะห์ดวงแรกและ f1 และ f3 สำหรับดาวเคราะห์ดวงที่ 2 ดวงอาทิตย์อยู่ที่จุด f1 (2) ส่วนแรเงา 2 ส่วน A1 และ A2 มีผิวพื้นเท่ากันและเวลาที่ดาวเคราะห์ 1 ทับพื้นที่ A1 เท่ากับเวลาที่ทับพื้นที่ A2. (3) เวลารวมของวงโคจรสำหรับดาวเคราะห์ 1 และดาวเคราะห์ 2 มีสัดส่วนเท่ากับ .

กฎการเคลื่อนที่ของดาวเคราะห์ของเคปเลอร์ (อังกฤษ: Kepler's laws of planetary motion) คือกฎทางคณิตศาสตร์ 3 ข้อที่กล่าวถึงการเคลื่อนที่ของดาวเคราะห์ในระบบสุริยะ นักคณิตศาสตร์และนักดาราศาสตร์ชาวเยอรมันชื่อ โยฮันเนส เคปเลอร์ (พ.ศ. 2114พ.ศ. 2173) เป็นผู้ค้นพบ

เคปเลอร์ได้ศึกษาการสังเกตการณ์ของนักดาราศาสตร์ผู้มีชื่อเสียงชาวเดนมาร์กชื่อไทโค บราห์ (Tycho Brahe) โดยประมาณ พ.ศ. 2148 เคปเลอร์พบว่าการสังเกตตำแหน่งของดาวเคราะห์ของบราห์เป็นไปตามกฎง่ายๆ ทางคณิตศาสตร์

กฎของเคปเลอร์ท้าทายดาราศาสตร์สายอริสโตเติลและสายทอเลมีและกฎทางฟิสิกส์ในขณะนั้น เคปเลอร์ยืนยันว่าโลกเคลื่อนที่เป็นวงรีมากกว่าวงกลม และยังได้พิสูจน์ว่าความเร็วการเคลื่อนที่มีความผันแปรด้วย ซึ่งเป็นการเปลี่ยนแปลงความรู้ทางดาราศาสตร์และฟิสิกส์ อย่างไรก็ดี คำอธิบายเชิงฟิสิกส์เกี่ยวกับพฤติกรรมของดาวเคราะห์ก็ได้ปรากฏชัดเจนได้ในอีกเกือบศตวรรษต่อมา เมื่อไอแซก นิวตันสามารถสรุปกฎของเคปเลอร์ได้ว่าเข้ากันกับกฎการเคลื่อนที่และกฎความโน้มถ่วงสากลของนิวตันเองโดยใช้วิชาแคลคูลัสที่เขาคิดสร้างขึ้น รูปจำลองแบบอื่นที่นำมาใช้มักให้ผลผิดพลาด

กฎ 3 ข้อของเคปเลอร์[แก้]

  1. วงโคจรของดาวเคราะห์ทุกดวงเป็นวงรี โดยมีดวงอาทิตย์เป็นจุดศูนย์กลางจุดหนึ่ง วงรีเกิดจากการมีจุดศูนย์กลาง 2 ศูนย์ ดังภาพ ดังนั้นเคปเลอร์จึงคัดค้านความเชื่อในแนวของอริสโตเติล ปโตเลมีและโคเปอร์นิคัสที่ว่าวงโคจรเป็นวงกลม
  2. ในขณะที่ดาวเคราะห์เคลื่อนไปในวงโคจร เส้นตรงที่เชื่อมระหว่างดาวเคราะห์กับดวงอาทิตย์กวาดพื้นที่เท่า ๆ กันในระยะเวลาเท่ากัน ซึ่งหมายความว่าดาวเคราะห์โคจรเร็วกว่าเมื่ออยู่ใกล้ดวงอาทิตย์และช้าลงเมื่ออยู่ห่างดวงอาทิตย์ ด้วยกฎข้อนี้ เคปเลอร์ได้ล้มทฤษฎีดาราศาสตร์อริสโตเติลที่ว่าดาวเคราะห์เคลื่อนที่ด้วยความเร็วคงที่
  3. กำลังสองของคาบการโคจรของดาวเคราะห์เป็นสัดส่วนโดยตรงกับกำลังสามของกึ่งแกนเอก (ครึ่งหนึ่งของความยาววงรี) ของวงโคจร ซึ่งหมายความว่า ไม่เพียงแต่วงโคจรที่ใหญ่กว่าเท่านั้นที่มีระยะเวลานานกว่า แต่อัตราความเร็วของดาวเคราะห์ที่มีวงโคจรทีใหญ่กว่านั้นก็โคจรช้ากว่าวงโคจรที่เล็กกว่าอีกด้วย

กฎของเคปเลอร์ได้แสดงไว้ข้างล่าง และเป็นกฎที่มาจากกฎของนิวตันที่ใช้พิกัดขั้วศูนย์สุริยะ (heliocentric polar coordinate) อย่างไรก็ตาม กฎของเคปเลอร์ยังสามารถเขียนอย่างอื่นได้โดยใช้พิกัดคาร์ทีเซียน (Cartesian coordinates) [1]

รายละเอียดทางคณิตศาสตร์[แก้]

กฎข้อที่ 1[แก้]

กฎเคปเลอร์ข้อที่ 1

กฎข้อแรกกล่าวว่า “วงโคจรของดาวเคราะห์ทุกดวงเป็นรูปวงรีที่มีดวงอาทิตย์เป็นจุดโฟกัสจุดหนึ่ง"

คณิตศาสตร์ของวงรีเป็นดังนี้

สมการคือ

โดยที่ p คือ กึ่งเลตัสเรกตัม (semi latus rectum) และ ε คือ ความเยื้องศูนย์กลาง (eccentricity) ซึ่งมีค่ามากกว่าหรือเท่ากับศูนย์ และน้อยกว่าหนึ่ง

เมื่อ θ=0° ดาวเคราะห์จะอยู่ที่จุดใกล้ดวงอาทิตย์ที่สุด

เมื่อ θ=90°: r=p และเมื่อ θ=180° ดาวเคราห์จะอยู่ที่จุดไกลดวงอาทิตย์ที่สุด:

กึ่งแกนเอกของวงรี a คือมัชฌิมเลขคณิตของ rmin และ rmax:

กึ่งแกนโทของวงรี b คือมัชฌิมเรขาคณิตของ rmin และ rmax:

นอกจากนี้ยังเป็นมัชฌิมเรขาคณิตระหว่างกึ่งแกนเอกกับกึ่งเลตัสเรกตัม

กฎข้อที่ 2[แก้]

ภาพแสดงกฎเคปเลอร์ข้อที่ 2

กฎข้อที่ 2 “เส้นตรงที่เชื่อมระหว่างดาวเคราะห์กับดวงอาทิตย์ กวาดพื้นที่เท่า ๆ กันในระยะเวลาเท่ากัน” [2]

กฎนี้รู้จักในอีกชื่อหนึ่งที่ว่ากฎพื้นที่เท่า ซึ่งเป็นผลสืบเนื่องโดยตรงจากกฎการอนุรักษ์โมเมนตัมเชิงมุม (law of conservation of angular momentum) โปรดดูการการอนุพัทธ์ดังภาพ

การคำนวณมี 4 ขั้นดังนี้

1. คำนวณ มุมกวาดเฉลี่ย (mean anomaly) M จากสูตร
2. คำนวณ มุมกวาดเยื้องศูนย์กลาง eccentric anomaly E โดยการแก้ สมการของเคปเลอร์:
3. คำนวณ มุมกวาดจริง (true anomaly) θ โดยใช้สมการ:
4. คำนวณ ระยะห่างศูนย์สุริยะ (heliocentric distance) r จากกฎข้อแรก:

กฎข้อที่ 3[แก้]

กฎข้อที่ 3 “กำลังสองของคาบการโคจรของดาวเคราะห์เป็นสัดส่วนโดยตรงกับกำลังสามของกึ่งแกนเอกของวงโคจร” ดังนั้น ไม่เพียงความยาววงโคจรจะเพิ่มด้วยระยะทางแล้ว ความเร็วของการโคจรจะลดลงด้วย การเพิ่มของระยะเวลาการโคจรจึงเป็นมากกว่าการเป็นสัดส่วน

= คาบการโคจรของดาวเคราะห์
= แกนกึ่งเอกของวงโคจร

ดังนั้น P2·a–3 มีค่าเหมือนกันสำหรับดาวเคราะห์ทุกดวงในระบบสุริยะรวมทั้งโลก เมื่อหน่วยหนึ่งถูกเลือก เช่น P ที่วัดเป็นปีดาราคติ (sidereal year) และ a ในหน่วยดาราศาสตร์ (astronomical unit) P2·a–3 มีค่า 1 สำหรับดาวเคราะห์ทุกดวงในระบบสุริยะ ในหน่วยเอสไอ:

ตำแหน่งในฟังก์ชันของเวลา[แก้]

Diagram Anomalies Kepler orbit-en.svg

ปัญหาเคปเลอร์อนุมานการโคจรวงรีและจุด 4 จุด:

  • s ดวงอาทิตย์ (ณ โฟกัสหนึ่งของวงรี);
  • z จุดใกล้ดวงอาทิตย์ที่สุด
  • c ศูนย์กลางของวงรี
  • p ดาวเคราะห์

และ

semimajor axis ระยะจากศูนย์กลางถึงจุดใกล้ดวงอาทิตย์ที่สุด นั่นคือกึ่งแกนเอก
ความเยื้องศูนย์กลาง
กึ่งแกนโท
ระยะจากดวงอาทิตย์ถึงดาวเคราะห์
ตำแหน่งดาวเคราะห์ตามที่เห็นจากดวงอาทิตย์ นั่นคือ มุมกวาดจริง

ปัญหาคือการคำนวณพิกัดเชิงขั้ว (r,ν) ของดาวเคราะห์จากเวลานับตั้งแต่ดาวเคราะห์ผ่านจุดใกล้ดวงอาทิตย์ที่สุด, t

และ

, y จากที่เห็นจากศูนย์กลาง นั่นคือมุมกวาดเฉลี่ย

,

โดย T คือคาบการโคจร

Division by a²/2 gives Kepler's equation

.

to get

จะได้

คูณด้วย (1+ε)/(1−ε) และใส่รากที่สอง จะได้ผลลัพธ์

ในขั้นที่สามนี้เราจะได้ความเชื่อมโยงกันระหว่างเวลากับตำแหน่งในวงโคจร

ขั้นที่สี่คือการคำนวณระยะห่างศูนย์สุริยะ r จากมุมกวาดจริง ν ด้วยกฎข้อแรกของเคปเลอร์:

การอนุพัทธ์ (Derivation) กฎของนิวตัน[แก้]

การอนุพัทธ์ของกฎเคปเลอร์ข้อที่ 2[แก้]


where is the tangential unit vector, and

So the position vector

is differentiated twice to give the velocity vector and the acceleration vector

Note that for constant distance, , the planet is subject to the centripetal acceleration, , and for constant angular speed, , the planet is subject to the coriolis acceleration, .

Inserting the acceleration vector into Newton's laws, and dividing by m, gives the vector equation of motion

Equating component, we get the two ordinary differential equations of motion, one for the radial acceleration and one for the tangential acceleration:

and integrate:

where is a constant of integration, and exponentiate:

This says that the specific angular momentum is a constant of motion, even if both the distance and the angular speed vary.

The area swept out from time t1 to time t2,

depends only on the duration t2t1. This is Kepler's second law.

การอนุพัทธ์ของกฎเคปเลอร์ข้อที่ 1[แก้]

and get

and

Differentiate

twice:

Substitute into the radial equation of motion

and get

Divide by


These solutions are

where and are arbitrary constants of integration. So the result is

Choosing the axis of the coordinate system such that , and inserting , gives:

If this is Kepler's first law.

กฎเคปเลอร์ข้อที่ 3[แก้]

where:


โดย:




Q.E.D.

อ้างอิง[แก้]

  1. Hyman, Andrew. "A Simple Cartesian Treatment of Planetary Motion", European Journal of Physics, Vol. 14, pp. 145-147 (1993).
  2. "Kepler's Second Law" by Jeff Bryant with Oleksandr Pavlyk, The Wolfram Demonstrations Project.

See also[แก้]

แหล่งข้อมูลอื่น[แก้]

  • Crowell, Benjamin, Conservation Laws, http://www.lightandmatter.com/area1book2.html, an online book that gives a proof of the first law without the use of calculus. (see section 5.2, p.112)
  • David McNamara and Gianfranco Vidali, Kepler's Second Law -JAVA Interactive Tutorial, http://www.phy.syr.edu/courses/java/mc_html/kepler.html, an interactive JAVA applet that aids in the understanding of Kepler's Second Law.
  • University of Tennessee's Dept. Physics & Astronomy: Astronomy 161 page on Johannes Kepler: The Laws of Planetary Motion [1]
  • Equant compared to Kepler: interactive model [2]
  • Kepler's Third Law:interactive model[3]