ผลต่างระหว่างรุ่นของ "จำนวนฟีโบนัชชี"

จากวิกิพีเดีย สารานุกรมเสรี
เนื้อหาที่ลบ เนื้อหาที่เพิ่ม
Yedcat (คุย | ส่วนร่วม)
ไม่มีความย่อการแก้ไข
ป้ายระบุ: การแก้ไขแบบเห็นภาพ แก้ไขจากอุปกรณ์เคลื่อนที่ แก้ไขจากเว็บสำหรับอุปกรณ์เคลื่อนที่
Potapt (คุย | ส่วนร่วม)
ไม่มีความย่อการแก้ไข
บรรทัด 1: บรรทัด 1:
[[ไฟล์:FibonacciBlocks.png|thumb|200px|การจัดเรียงสี่เหลี่ยมจัตุรัสที่มีความยาวด้านเท่ากับจำนวนฟีโบนัชชี|link=%E0%B9%84%E0%B8%9F%E0%B8%A5%E0%B9%8C:FibonacciBlocks.png|alt=loveFu]]
[[ไฟล์:FibonacciBlocks.png|thumb|200px|การจัดเรียงสี่เหลี่ยมจัตุรัสที่มีความยาวด้านเท่ากับจำนวนฟีโบนัชชี]]


'''ลำดับฟีโบนักชี''' ({{lang-en|Fibonacci }}) คือ[[จำนวน]]ต่าง ๆ ที่อยู่ใน[[ลำดับจำนวนเต็ม]]ดังต่อไปนี้
'''จำนวนฟีโบนัชชี''' หรือ '''เลขฟีโบนัชชี''' ({{lang-en|Fibonacci number}}) คือ[[จำนวน]]ต่าง ๆ ที่อยู่ใน[[ลำดับจำนวนเต็ม]]ดังต่อไปนี้
: [[0]], [[1]], [[1]], [[2]], [[3]], [[5]], [[8]], [[13]], [[21]], [[34]], [[55]], [[89]], [[144]], [[233]], [[300|377]], [[600|610]], [[900|987]], [[1000|1597]], [[2000|2584]], [[4000|4181]], [[6000|6765]], [[10000|10946]] ... {{OEIS|id=A000045}}
: [[0]], [[1]], [[2]], [[3]], [[5]], [[8]], [[13]], [[21]], [[34]], [[55]], [[89]], [[144]], [[233]], [[300|377]], [[600|610]], [[900|987]], [[1000|1597]], [[2000|2584]], [[4000|4181]], [[6000|6765]], [[10000|10946]] ... {{OEIS|id=A000045}}
โดยมีนิยามของความสัมพันธ์ว่า จำนวนถัดไปเท่ากับผลบวกของจำนวนสองจำนวนก่อนหน้า และสองจำนวนแรกก็คือ 0 และ 1 ตามลำดับ และลำดับของจำนวนดังกล่าวก็จะเรียกว่า '''ลำดับฟีโบนักชี''' ({{lang-en|Fibonacci sequence}})
โดยมีนิยามของความสัมพันธ์ว่า จำนวนถัดไปเท่ากับผลบวกของจำนวนสองจำนวนก่อนหน้า และสองจำนวนแรกก็คือ 0 และ 1 ตามลำดับ และลำดับของจำนวนดังกล่าวก็จะเรียกว่า '''ลำดับฟีโบนัชชี''' ({{lang-en|Fibonacci sequence}})


หากเขียนให้อยู่ในรูปของสัญลักษณ์ ลำดับ ''F<sub>n</sub>'' ของจำนวนฟีโบนัชชีนิยามขึ้นด้วย[[ความสัมพันธ์เวียนเกิด]]ดังนี้
หากเขียนให้อยู่ในรูปของสัญลักษณ์ ลำดับ ''F<sub>n</sub>'' ของจำนวนฟีโบนัชชีนิยามขึ้นด้วย[[ความสัมพันธ์เวียนเกิด]]ดังนี้
: <math>F_n = F_{n-1} + F_{n-2}\!</math>
: <math>F_n = F_{n-1} + F_{n-2}\!</math>
โดยกำหนดค่าเริ่มแรกให้ <ref>1..</ref>
โดยกำหนดค่าเริ่มแรกให้ <ref>Lucas p. 3</ref>
: <math>F_0 = 0;\; F_1 = 1</math>
: <math>F_0 = 0;\; F_1 = 1</math>


ชื่อของจำนวนฟีโบนัชชีตั้งขึ้นเพื่อเป็นเกียรติแก่นักคณิตศาสตร์ชาว[[อิตาลี|ที่มีชื่อเสียงอิตาลี]]ชื่อ '''เลโอนาร์โดแห่งปีซา (Leonardo de Pisa''') ซึ่งเป็นที่รู้จักกันในนาม[[เลโอนาร์โด ฟีโบนัชชี|ฟีโบนัชชี]] (Fibonacci) ผู้ค้นพบจำนวนฟีโบนัชชีในต้นศตวรรษที่ 13
ชื่อของจำนวนฟีโบนัชชีตั้งขึ้นเพื่อเป็นเกียรติแก่นักคณิตศาสตร์ชาว[[อิตาลี]]ชื่อ เลโอนาร์โดแห่งปีซา (Leonardo de Pisa) ซึ่งเป็นที่รู้จักกันในนาม[[เลโอนาร์โด ฟีโบนัชชี|ฟีโบนัชชี]] (Fibonacci) ผู้ค้นพบจำนวนฟีโบนัชชีในต้นศตวรรษที่ 13


== รูปปิด ==
== รูปปิด ==
เนื่องจากลำดับฟีโบนัชชีเป็นลำดับที่นิยามด้วย[[ความสัมพันธ์เวียนบังเกิด]]เชิงเส้น เราจึงสามารถหา[[รูปปิด]]ของจำนวนฟีโบนัชชีได้ โดย[[สมการแสดงรูปปิดของจำนวนฟีโบนัชชี|สมการแสดงรูปปิดของจำนวนฟีโบนักชี]] มีชื่อเรียกว่า ''[[จาค ฟิลิปป์ มารี บิเนต์|สูตรของบิเนต์]]'' มีดังต่อไปนี้
เนื่องจากลำดับฟีโบนัชชีเป็นลำดับที่นิยามด้วย[[ความสัมพันธ์เวียนบังเกิด]]เชิงเส้น เราจึงสามารถหา[[รูปปิด]]ของจำนวนฟีโบนัชชีได้ โดยสมการแสดงรูปปิดของจำนวนฟีโบนัชชี มีชื่อเรียกว่า ''สูตรของ[[จาค ฟิลิปป์ มารี บิเนต์|บิเนต์]]'' มีดังต่อไปนี้


:<math>F\left(n\right) = {{\varphi^n-(1-\varphi)^n} \over {\sqrt 5}}</math>
:<math>F\left(n\right) = {{\varphi^n-(1-\varphi)^n} \over {\sqrt 5}}</math>
บรรทัด 67: บรรทัด 67:
== ความสัมพันธ์กับอัตราส่วนทองคำ ==
== ความสัมพันธ์กับอัตราส่วนทองคำ ==


[[โยฮันน์ เคปเลอร์]] ค้นพบว่า[[อัตราส่วนของจำนวนฟีโบนัชชีที่ติดกัน]]ลู่เข้าสู่[[อัตราส่วนทองคำ]] กล่าวคือ
[[โยฮันน์ เคปเลอร์]] ค้นพบว่าอัตราส่วนของจำนวนฟีโบนัชชีที่ติดกันลู่เข้าสู่[[อัตราส่วนทองคำ]] กล่าวคือ


:<math>\frac{F(n+1)}{F(n)}</math> ลู่เข้าสู่[[อัตราส่วนทองคำ]] <math>\varphi</math>
:<math>\frac{F(n+1)}{F(n)}</math> ลู่เข้าสู่[[อัตราส่วนทองคำ]] <math>\varphi</math>
บรรทัด 88: บรรทัด 88:
เนื่องจากจำนวนฟีโบนัชชีคือ <math>F_{a,b}</math> เมื่อ <math>a = 1/\sqrt{5}</math> และ <math>b = -1/\sqrt{5}</math> ลิมิตของอัตราส่วนของเลขฟีโบนัชชีที่ติดกันจึงสอดคล้องกับสมการข้างบนด้วย
เนื่องจากจำนวนฟีโบนัชชีคือ <math>F_{a,b}</math> เมื่อ <math>a = 1/\sqrt{5}</math> และ <math>b = -1/\sqrt{5}</math> ลิมิตของอัตราส่วนของเลขฟีโบนัชชีที่ติดกันจึงสอดคล้องกับสมการข้างบนด้วย


== รูปเมทริก[[ซ์]] ==
== รูปเมทริกซ์ ==
ระบบสมการความแตกต่างเชิงเส้นที่อธิบายลำดับฟีโบนัชชีได้คือ
ระบบสมการความแตกต่างเชิงเส้นที่อธิบายลำดับฟีโบนัชชีได้คือ
:<math>\begin{align}
:<math>\begin{align}
บรรทัด 108: บรรทัด 108:


==ลำดับฟิโบนัชชีในธรรมชาติ==
==ลำดับฟิโบนัชชีในธรรมชาติ==
สิ่งที่ปรากฏตามธรรมชาติมิได้มีแต่รูปร่างง่ายๆ เท่านั้น บางอย่างมีรูปร่างที่มีแบบแผนทางคณิตศาสตร์ที่ยุ่งยากขึ้นไปอีก ตัวอย่างที่น่าสนใจของธรรมชาติที่เป็นไปตามกฎเกณฑ์ของ คณิตศาสตร์ชั้นสูง ได้แก่ เส้นโค้งก้นหอย ซึ่งมีคุณสมบัติว่า ถ้าลากเส้นตรงจากจุดหลายของเกลียวข้างในสุดไปตัดกับเส้นโค้งแล้ว มุมที่เกิดจากเส้นตรงนั้นกับเส้นสัมผัสกับเส้นโค้ง ณ จุดตัดจะเท่ากันเสมอดังรูป มุม A = มุม B = มุม C เส้นโคังที่มีลักษณะเป็นก้นหอยจะพบได้ในหอยบางชนิด เช่น [[หอยทาก]]
สิ่งที่ปรากฏตามธรรมชาติมิได้มีแต่รูปร่างง่ายๆ เท่านั้น บางอย่างมีรูปร่างที่มีแบบแผนทางคณิตศาสตร์ที่ยุ่งยากขึ้นไปอีก ตัวอย่างที่น่าสนใจของธรรมชาติที่เป็นไปตามกฎเกณฑ์ของ คณิตศาสตร์ชั้นสูง ได้แก่ เส้นโค้งก้นหอย ซึ่งมีคุณสมบัติว่า ถ้าลากเส้นตรงจากจุดหลายของเกลียวข้างในสุดไปตัดกับเส้นโค้งแล้ว มุมที่เกิดจากเส้นตรงนั้นกับเส้นสัมผัสกับเส้นโค้ง ณ จุดตัดจะเท่ากันเสมอดังรูป มุม A = มุม B = มุม C เส้นโคังที่มีลักษณะเป็นก้นหอยจะพบได้ในหอยบางชนิด เช่น หอยทาก


นอกจากนี้ยังมีความโค้งของงาช้าง ความโค้งของเกสรดอกทานตะวัน ตาสับปะรดและตาลูกสน ก็มีลักษณะคล้ายส่วนของเส้นโค้งก้นหอยด้วย
นอกจากนี้ยังมีความโค้งของงาช้าง ความโค้งของเกสรดอกทานตะวัน ตาสับปะรดและตาลูกสน ก็มีลักษณะคล้ายส่วนของเส้นโค้งก้นหอยด้วย

รุ่นแก้ไขเมื่อ 17:44, 17 ตุลาคม 2560

การจัดเรียงสี่เหลี่ยมจัตุรัสที่มีความยาวด้านเท่ากับจำนวนฟีโบนัชชี

จำนวนฟีโบนัชชี หรือ เลขฟีโบนัชชี (อังกฤษ: Fibonacci number) คือจำนวนต่าง ๆ ที่อยู่ในลำดับจำนวนเต็มดังต่อไปนี้

0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946 ... (ลำดับ OEISA000045)

โดยมีนิยามของความสัมพันธ์ว่า จำนวนถัดไปเท่ากับผลบวกของจำนวนสองจำนวนก่อนหน้า และสองจำนวนแรกก็คือ 0 และ 1 ตามลำดับ และลำดับของจำนวนดังกล่าวก็จะเรียกว่า ลำดับฟีโบนัชชี (อังกฤษ: Fibonacci sequence)

หากเขียนให้อยู่ในรูปของสัญลักษณ์ ลำดับ Fn ของจำนวนฟีโบนัชชีนิยามขึ้นด้วยความสัมพันธ์เวียนเกิดดังนี้

โดยกำหนดค่าเริ่มแรกให้ [1]

ชื่อของจำนวนฟีโบนัชชีตั้งขึ้นเพื่อเป็นเกียรติแก่นักคณิตศาสตร์ชาวอิตาลีชื่อ เลโอนาร์โดแห่งปีซา (Leonardo de Pisa) ซึ่งเป็นที่รู้จักกันในนามฟีโบนัชชี (Fibonacci) ผู้ค้นพบจำนวนฟีโบนัชชีในต้นศตวรรษที่ 13

รูปปิด

เนื่องจากลำดับฟีโบนัชชีเป็นลำดับที่นิยามด้วยความสัมพันธ์เวียนบังเกิดเชิงเส้น เราจึงสามารถหารูปปิดของจำนวนฟีโบนัชชีได้ โดยสมการแสดงรูปปิดของจำนวนฟีโบนัชชี มีชื่อเรียกว่า สูตรของบิเนต์ มีดังต่อไปนี้

โดย เป็นตัวเลขที่รู้จักกันโดยทั่วไปว่าอัตราส่วนทองคำ

การพิสูจน์:

พิจารณาสมการพหุนาม เมื่อคูณทั้งสองข้างด้วย เราได้ว่า

ผลเฉลยของสมการ ได้แก่ และ ดังนั้น

= และ
=

พิจารณาฟังก์ชัน

เมื่อ และ เป็นจำนวนจริงใดๆ

เราได้ว่าฟังก์ชันเหล่านี้สอดคล้องกับความสัมพันธ์เวียนบังเกิดที่ใช้นิยมเลขฟีโบนัชชี

เลือก and เราได้ว่า

และ

เราสามารถใช้ข้อความนี้เป็นฐานของการพิสูจน์แบบอุปนัยเชิงคณิตศาสตร์ของข้อความ และใช้เอกลักษณ์ของ พิสูจน์กรณีอุปนัยได้ เราจึงสามารถสรุปว่า

สำหรับจำนวนเต็มที่ไม่เป็นลบ ทุกตัว

เนื่องจาก สำหรับทุกๆ เราจึงได้ว่า จึงเป็นจำนวนเต็มที่ใกล้ ที่สุด หรือเขียนเป็นประโยคสัญลักษณ์โดยใช้ฟังก์ชันพื้น (floor function) ได้ว่า

ความสัมพันธ์กับอัตราส่วนทองคำ

โยฮันน์ เคปเลอร์ ค้นพบว่าอัตราส่วนของจำนวนฟีโบนัชชีที่ติดกันลู่เข้าสู่อัตราส่วนทองคำ กล่าวคือ

ลู่เข้าสู่อัตราส่วนทองคำ

การพิสูจน์:

สำหรับจำนวนจริง เราได้ว่า

,

เนื่องจาก ดังนั้น

เนื่องจากจำนวนฟีโบนัชชีคือ เมื่อ และ ลิมิตของอัตราส่วนของเลขฟีโบนัชชีที่ติดกันจึงสอดคล้องกับสมการข้างบนด้วย

รูปเมทริกซ์

ระบบสมการความแตกต่างเชิงเส้นที่อธิบายลำดับฟีโบนัชชีได้คือ

และมีรูปปิดคือ

ด้วยรูปปิดดังกล่าว การคำนวณค่าฟีโบนัชชีจึงสามารถคำนวณได้โดยใช้จำนวนการดำเนินการเลขคณิต O(log n) หรือใช้เวลา O(M(n) log(n)) โดยที่ M(n) คือเวลาในการคูณเลข n หลัก 2 ตัว[2] โดยใช้วิธียกกำลังโดยการยกกำลังสอง กล่าวคือ

เมื่อให้ x เป็นเมทริกซ์ จึงสามารถหาค่า Fn ได้ในเวลาที่กล่าวไว้แล้ว

ลำดับฟิโบนัชชีในธรรมชาติ

สิ่งที่ปรากฏตามธรรมชาติมิได้มีแต่รูปร่างง่ายๆ เท่านั้น บางอย่างมีรูปร่างที่มีแบบแผนทางคณิตศาสตร์ที่ยุ่งยากขึ้นไปอีก ตัวอย่างที่น่าสนใจของธรรมชาติที่เป็นไปตามกฎเกณฑ์ของ คณิตศาสตร์ชั้นสูง ได้แก่ เส้นโค้งก้นหอย ซึ่งมีคุณสมบัติว่า ถ้าลากเส้นตรงจากจุดหลายของเกลียวข้างในสุดไปตัดกับเส้นโค้งแล้ว มุมที่เกิดจากเส้นตรงนั้นกับเส้นสัมผัสกับเส้นโค้ง ณ จุดตัดจะเท่ากันเสมอดังรูป มุม A = มุม B = มุม C เส้นโคังที่มีลักษณะเป็นก้นหอยจะพบได้ในหอยบางชนิด เช่น หอยทาก

นอกจากนี้ยังมีความโค้งของงาช้าง ความโค้งของเกสรดอกทานตะวัน ตาสับปะรดและตาลูกสน ก็มีลักษณะคล้ายส่วนของเส้นโค้งก้นหอยด้วย ยังมีเรื่องที่น่าสนใจในธรรมชาติที่เกี่ยวข้องกับคณิตศาสตร์อีก จากการศึกษาเส้นโค้งของตาลูกสน ตาสับปะรด และเกสรดอกทานตะวัน จะเห็นว่าเส้นโค้งที่หมุนตามเข็มนาฬิกาของตาลูกสนมีจำนวน 5 เส้น และหมุนทวนเข็มนาฬิกามีจำนวน 3 เส้น หรืออาจกล่าวได้ว่า จำนวนเส้นโค้งสองแบบมีอัตราส่วนเป็น 5 ต่อ 8 สำหรับตาสับปะรด เส้นโค้งตามเข็มนาฬิกาและทวนเข็มนาฬิกา มีอัตราส่วนเป็น 8 ต่อ 13 เส้นโค้งที่เกิดจากเกสรดอกทานตะวันตามเข็มนาฬิกา และทวนเข็มนาฬิกามีอัตราส่วนเป็น 21 ต่อ 34 ปรากฏการณ์นี้เป็นไปตามกฎเกณฑ์ของเลขฟีโบนัชชี

การนำไปใช้

จำนวนฟีโบนัชชีมีความสำคัญในการวิเคราะห์ประสิทธิภาพของยูคลีเดียนอัลกอริทึมซึ่งใช้ในการหาตัวหารร่วมมากของจำนวนเต็มสองจำนวน โดยยูคลิเดียนอัลกอริทึมจะทำงานได้ช้าที่สุดถ้าข้อมูลเข้าเป็นจำนวนฟีโบนัชชีสองตัวที่ติดกัน

ยูริ มาทิยาเซวิช พิสูจน์ได้ว่าจำนวนฟีโบนัชชีมีนิยามในรูปของผลเฉลยของสมการไดโอแฟนไทน์ ซึ่งความจริงข้อนี้นำไปสู่การแก้ปัญหาข้อที่ 10 ของฮิลแบร์ท

จำนวนเต็มทุกจำนวนสามารถเขียนอยู่ในรูปของผลบวกของจำนวนฟีโบนัชชีที่ไม่ติดกินได้เพียงแบบเดียวเท่านั้น ความจริงข้อนี้เป็นที่รู้จักกันในนามทฤษฎีบทของเซคเคนดอร์ฟ การเขียนจำนวนเต็มในรูปดังกล่าวเรียกว่า การนำเสนอแบบเซคเคนดอร์ฟ

ตัวกำเนิดจำนวนสุ่มเทียมบางตัวใช้จำนวนฟีโบนัชชีเป็นเครื่องมือในการสร้างเลขสุ่ม

จำนวนฟีโบนัชชีถูกใช้กำหนดความยาวของส่วนประกอบต่างๆ ของงานศิลปะ และถูกใช้ในการเทียบเสียงเครื่องดนตรี ผลงานเพลงที่มีความเกี่ยวข้องกับจำนวนฟีโบนัชชี ได้แก่ เพลงสำหรับเครื่องสาย เครื่องประกอบจังหวะ และซีเลสตา ของ เบลา บาท็อก, และเพลงแลเทอราทัส ของวงทูล ซึ่งมีจำนวนพยางค์ในวรรคของเนื้อร้องเท่ากับจำนวนฟีโบนัชชี ("Black/Then/White are/All I see/In my infancy/Red and yellow then came to be")

อ้างอิง

  1. Lucas p. 3
  2. Dijkstra, Edsger W. (1978), In honour of Fibonacci (PDF).
  • Ball, Keith M. (2003). "Chapter 8: Fibonacci's Rabbits Revisited". Strange Curves, Counting Rabbits, and Other Mathematical Explorations. Princeton University Press. ISBN 0691113211.
  • Lucas, Édouard (1891). Théorie des nombres. Vol. 1. Gauthier-Villars.
  • Arakelian, Hrant (2014), Mathematics and History of the Golden Section. Logos, 404 p. ISBN 978-5-98704-663-0, (rus.)