เหตุผลวิบัติโดยอัตราพื้นฐาน

จากวิกิพีเดีย สารานุกรมเสรี

เหตุผลวิบัติโดยอัตราพื้นฐาน[1] (อังกฤษ: Base rate fallacy) หรือ การละเลยอัตราพื้นฐาน (base rate neglect) หรือ ความเอนเอียงโดยอัตราพื้นฐาน (base rate bias) เป็นเหตุผลวิบัติรูปนัย (formal fallacy) ชนิดหนึ่ง ที่เมื่อมีการแสดงทั้งข้อมูลเกี่ยวกับอัตราพื้นฐานที่อยู่ในประเด็นแต่ว่าเป็นข้อมูลแบบทั่ว ๆ ไป และทั้งข้อมูลที่เฉพาะเจาะจงแต่กับบางกรณีเท่านั้น เรามักจะไม่สนใจข้อมูลทั่วไปแต่จะสนใจแต่ข้อมูลที่เฉพาะเจาะจงเท่านั้น[2] ซึ่งนำไปสู่การประเมินผลที่มีความเอนเอียง

ตัวอย่างที่ 1[แก้]

จอห์นเป็นชายที่ใส่เสื้อผ้าแฟชั่นกอทิก ไว้ผมดำยาว และชอบฟังดนตรีเดทเมทัล มีความเป็นไปได้เท่าไรที่เขาจะเป็นคริสต์ศาสนิกชน มีความเป็นไปได้เท่าไรที่เขาจะถือลัทธิซาตาน

ถ้าถามคน (อย่างน้อยก็คนตะวันตก) ด้วยคำถามนี้ เขามักจะให้ค่าความน่าจะเป็นว่าจอห์นเป็นคริสต์ศาสนิกชนต่ำเกินไป และให้ค่าความน่าจะเป็นว่าเขาถือลัทธิซาตานสูงเกินไป นี่เป็นเพราะว่า บุคคลเหล่านั้นมองข้ามอัตราพื้นฐานของความเป็นคริสต์ศาสนิกชน (ซึ่งมี 2,000 ล้านคนในโลก) ที่สูงกว่าอัตราพื้นฐานของคนถือลัทธิซาตาน (ประมาณว่ามีอยู่หลายพันคน) มาก[3] ดังนั้น ถึงแม้ว่า ลักษณะต่าง ๆ เช่นความนิยมชมชอบในแฟชั่นเป็นต้น อาจจะเป็นตัวชี้ที่เพิ่มความน่าจะเป็นว่าเป็นคนถือลัทธิซาตานเป็นสิบเท่า แต่ว่า ความน่าจะเป็นว่าจอห์นเป็นคริสต์ศาสนิกชนก็ยังสูงกว่ามาก

ตัวอย่างที่ 2[แก้]

เจ้าหน้าที่ตำรวจมีเครื่องวิเคราะห์ลมหายใจ (สำหรับตรวจจับคนเมา) ที่แสดงว่าเมาอย่างผิดพลาดใน 5% ของผู้ขับรถที่ไม่เมา แต่ว่า เครื่องวิเคราะห์ลมหายใจไม่เคยพลาดที่จะจับคนเมาจริง ๆ มีคนขับรถ 1 ใน 1,000 ที่ขับรถเมื่อเมา สมมุติว่า เจ้าหน้าที่หยุดรถโดยสุ่ม แล้วบังคับใช้เครื่องวิเคราะห์ลมหายใจกับคนขับ และเครื่องแสดงว่าคนขับเมา ถ้าสมมุติว่า เราไม่รู้ข้อมูลอย่างอื่นเลยเกี่ยวกับคนขับ มีความน่าจะเป็นสูงเท่าไรที่คนขับจะเมาจริง ๆ

คนเป็นจำนวนมากจะตอบว่า มีความน่าจะเป็นสูงถึง 95% แต่ว่าความน่าจะเป็นจริง ๆ อยู่ที่แค่ 2%

เพื่อที่จะหาคำตอบที่ถูกต้อง เราควรจะใช้ Bayes' theorem จุดมุ่งหมายก็คือเพื่อที่จะหาค่าความน่าจะเป็นว่าคนขับเป็นคนเมาเมื่อเครื่องวิเคราะห์ลมหายใจแสดงว่าคนขับเมา เมื่อหยุดคนขับรถโดยสุ่ม ซึ่งสามารถเขียนได้ว่า

ซึ่งเราได้ข้อมูลจากบทความตัวอย่างว่า

คือค่าความน่าจะเป็นว่าคนขับเมา (คือ 1/1000)
คือค่าความน่าจะเป็นว่าคนขับไม่เมา (คือ 999/1000)
คือความน่าจะเป็นว่าเครื่องวิเคราะห์จะแสดงว่าคนขับเมา ถ้าคนขับเมา
คือค่าความน่าจะเป็นว่าเครื่องวิเคราะห์จะแสดงว่าคนขับเมา ถ้าคนขับไม่เมา

ดังที่เราเห็นได้จากสูตร ถ้าเราต้องการคำตอบ เราจะต้องหาค่า p (D) คือค่าความน่าจะเป็นที่เครื่องวิเคราะห์จะแสดงว่าคนขับเมาเมื่อหยุดคนขับโดยสุ่มโดยที่ไม่รู้ว่าคนขับเมาหรือไม่เมา ซึ่งหาได้จากค่าที่บอกมาแล้วดังนี้

ซึ่งได้

เมื่อใส่ค่านี้ลงในสูตรแรก ก็จะได้

คำอธิบายที่อาจจะเห็นได้ง่ายกว่าอย่างหนึ่งก็คือ โดยเฉลี่ยแล้ว สำหรับคนขับทุก ๆ 1000 คนที่หยุดตรวจ

  • คนขับ 1 คนจะเมา และเครื่องวิเคราะห์จะจับว่าเมาได้ 100% ดังนั้น จะมี 1 คนที่จับได้ว่าเมาอย่างถูกต้อง
  • คนขับ 999 คนจะไม่เมา และจากคนเหล่านั้น 5% จะจับได้ว่าเมาอย่างผิดพลาด และดังนั้นจะมีคน 49.95 คนถูกจับว่าเมาอย่างผิด ๆ

และดังนั้น ในบรรดาคน 1,000 คนที่เครื่องวิเคราห์ะบอกว่าเมาคือ 50.95 คน จะมีคนเมาจริง ๆ 1 คน และดังนั้นความน่าจะเป็นที่จะตรวจจับคนเมาโดยสุ่มได้จริง ๆ คือ

แต่ว่า ความถูกต้องของคำตอบนี้ขึ้นอยู่กับข้อสมมุติเบื้องต้นว่า เจ้าหน้าที่หยุดรถโดยสุ่มจริง ๆ ไม่ใช่เพราะขับรถไม่ดี แต่ว่า ถ้าใช้การขับรถไม่ดี (หรือเหตุผลอย่างใดอย่างหนึ่งอื่น) เป็นเหตุผลในการหยุดรถ การคำนวณก็จะต้องรวมเอาค่าความน่าจะเป็นของคนเมาขับรถดีไม่ดี และคนไม่เมาขับรถดีไม่ดีเข้าไปด้วย

ตัวอย่าง 3[แก้]

ในเมืองที่มีคนอาศัยอยู่ 1 ล้านคน สมมุติว่ามีผู้ก่อการร้าย 100 คน และผู้ไม่ใช่ผู้ก่อการร้าย 999,900 คน เพื่อให้ง่าย ๆ ให้สมมุติด้วยว่าคนที่มีอยู่ทั้งหมดในเมืองเป็นผู้อาศัยในเมือง ดังนั้น อัตราพื้นฐานของความน่าจะเป็นที่จะหยุดผู้ก่อการร้ายเมื่อหยุดคนในเมืองโดยสุ่มก็คือ 0.0001 (.01%) และอัตราพื้นฐานของความน่าจะเป็นที่จะหยุดผู้ไม่ใช่ผู้ก่อการร้ายก็คือ 0.9999 (99.99%) เพื่อจะพยายามจับผู้ก่อการร้าย เทศบาลได้ติดตั้งระบบเตือนภัย ที่ใช้กล้องวงจรปิดพร้อมกับโปรแกรมคอมพิวเตอร์ที่สามารถรู้จำใบหน้าได้โดยอัตโนมัติ

โปรแกรมคอมพิวเตอร์มีอัตราความล้มเหลวที่ 1% คือ

  • อัตราการตรวจจับไม่ได้ที่ผิดพลาด (false negative) คือ ถ้ากล้องเจอผู้ก่อการร้าย ระบบจะส่งสัญญาณเตือนภัยอย่างถูกต้อง 99% และจะพลาดไม่เตือนภัย 1%
  • อัตราการตรวจจับที่ผิดพลาด (false positive) คือ ถ้ากล้องเจอผู้ที่ไม่ใช่ผู้ก่อการร้าย ระบบจะไม่ส่งสัญญาณเตือนภัยอย่างถูกต้อง 99% แต่จะพลาดเตือนภัย 1%

สมมุติว่า ถ้ากล้องเจอบุคคลหนึ่งที่ทำให้เกิดการเตือนภัย มีโอกาสเท่าไรที่คน ๆ นั้นจะเป็นผู้ก่อการร้าย กล่าวอีกอย่างหนึ่งก็คือ อะไรเป็นค่า P (ก่อการร้าย | เตือนภัย) คือค่าความน่าจะเป็นว่าบุคคลนั้นเป็นผู้ก่อการร้ายเมื่อมีการเตือนภัย ผู้ที่เกิดเหตุผลวิบัติโดยอัตราพื้นฐานจะอนุมานว่ามีโอกาส 99% ที่บุคคลนั้นจะเป็นผู้ก่อการร้าย แม้ว่า ค่าอนุมานนั้นดูเหมือนจะมีเหตุผล แต่จริง ๆ แล้วเป็นเหตุผลที่ผิดพลาด และการคำนวณที่จะแสดงต่อไปจะชี้ว่า คน ๆ นั้นมีโอกาสเพียงเกือบ 1% เท่านั้นที่จะเป็นผู้ก่อการร้าย จะไม่ใกล้ 99% เลย

เหตุผลวิบัติเกิดขึ้นจากความสับสนเกี่ยวกับอัตราความล้มเหลวสองอย่าง คือ "จำนวนการไม่เตือนภัยต่อผู้ก่อการร้าย 100 คน" (false negative) กับ "จำนวนผู้ไม่ใช่ผู้ก่อการร้ายต่อการเตือนภัย 100 ครั้ง" (false positive) เป็นค่าที่ไม่เกี่ยวข้องอะไรกันเลย ค่าแรกไม่จำเป็นต้องเท่ากับค่าที่สอง ไม่จำเป็นที่จะต้องเกือบเท่ากันเลยด้วยซ้ำ ลองพิจารณาอย่างนี้ว่า สมมุติว่า มีระบบเตือนภัยเช่นเดียวกันที่ติดตั้งในเมืองอีกเมืองหนึ่งที่ไม่มีผู้ก่อการร้ายอยู่เลย และเหมือนกับในเมืองแรก มีการเตือนภัยทุก 1 ครั้งจาก 100 ครั้งที่พบผู้ไม่ใช่ผู้ก่อการร้าย แต่ไม่เหมือนกับเมืองแรก จะไม่มีการเตือนภัยสำหรับผู้ก่อการร้ายเลย (เพราะไม่มีผู้ก่อการร้าย) ดังนั้น 100% ของการเตือนภัยจะเป็นเพราะผู้ไม่ใช่ผู้ก่อการร้าย ซึ่งก็คือ "จำนวนผู้ไม่ใช่ผู้ก่อการร้ายต่อการเตือนภัย 100 ครั้ง" สำหรับเมืองนี้จะเท่ากับ 100 ทั้ง ๆ ที่ P (ก่อการร้าย | เตือนภัย) = 0% ซึ่งก็คือ มีโอกาส 0% ที่มีการตรวจจับเจอผู้ก่อการร้ายเมื่อเกิดการเตือนภัย

และสำหรับเมืองแรก ลองพิจารณาว่า ถ้าประชากร 1 ล้านคนทั้งหมดเดินผ่านกล้อง ผู้ก่อการร้าย 99 คนจาก 100 คนจะทำให้เกิดสัญญาณเตือนภัย แต่ผู้ไม่ใช่ผู้ก่อการร้าย 9,999 จาก 999,900 คนก็จะทำให้เกิดการเตือนภัยเช่นเดียวกัน ดังนั้น จะมีคนทั้งหมด 10,098 คนที่จะทำให้เกิดสัญญาณเตือนภัย โดยที่มี 99 คนเป็นผู้ก่อการร้าย เพราะฉะนั้น ความน่าจะเป็นที่บุคคลที่ก่อให้เกิดสัญญาณเตือนภัยจะเป็นผู้ก่อการร้ายจริง ๆ เป็นเพียง 99 ใน 10,098 ซึ่งน้อยกว่า 1% และน้อยกว่าค่าที่เรา (ผู้ที่มีเหตุผลวิบัตินี้) เดาในเบื้องต้นที่ 99%

ความเห็นวิบัติโดยอัตราพื้นฐานทำให้เกิดการคลาดเคลื่อนอย่างไม่น่าเชื่อในตัวอย่างนี้เพราะว่า มีผู้ไม่ใช่ผู้ก่อการร้ายมากกว่าผู้ก่อการร้ายอย่างมหาศาล

ผลงานวิจัยทางจิตวิทยา[แก้]

งานทดลองต่าง ๆ พบว่า เราให้ความสำคัญกับข้อมูลเฉพาะมากกว่าข้อมูลทั่วไป ถ้ามีข้อมูลเฉพาะ[4][5][6] ในงานทดลองงานหนึ่งที่ให้นักศึกษาประเมินเกรดของนักศึกษาสมมุติ พบว่า นักศึกษามักจะมองข้ามข้อมูลทางสถิติเกี่ยวกับการแจกแจงเกรด (grade distribution) ถ้ามีข้อมูลเฉพาะตัวเกี่ยวกับนักศึกษาสมมุติ แม้ว่า ข้อมูลเฉพาะตัวนั้นอาจจะไม่มีความสำคัญอะไรเลยต่อการได้เกรดหนึ่ง ๆ[5] มีการใช้ผลงานวิจัยนี้ในการอ้างว่า การสัมภาษณ์ผู้สมัครเป็นนักศึกษา (ในมหาวิทยาลัยของสหรัฐอเมริกา) ไม่จำเป็นในกระบวนการสอบรับนักศึกษา เพราะว่า ผู้สัมภาษณ์ไม่สามารถที่จะคัดเลือกผู้สมัครได้ดีกว่าค่าสถิติพื้นฐาน

นักจิตวิทยาชาวอเมริกันยุคต้น ๆ ที่ทำการศึกษาเช่นนี้คือ แดเนียล คาฮ์นะมัน และอะมอส ทเวอร์สกี้ ได้อธิบายปรากฏการณ์นี้ว่าเป็นการคิดหาคำตอบโดยใช้ฮิวริสติกโดยความเป็นตัวแทน พวกเขาอ้างว่า มนุษย์ประเมินค่าความน่าจะเป็นหลายอย่าง หรือประเมินตัดสินเหตุและผล อาศัยว่าสิ่งหนึ่งมีความเป็นตัวแทน คือเหมือน กับอีกสิ่งหนึ่ง หรือกับประเภทหนึ่ง ๆ มากเท่าไร[5] ดร. คาฮ์นะมันพิจารณาว่า การละเลยอัตราพื้นฐานเช่นนี้ เป็นรูปแบบหนึ่งของ extension neglect[7][8] ส่วนนักจิตวิทยาริชาร์ด นิสเบ็ตต์ ที่มหาวิทยาลัยมิชิแกนเสนอว่า attribution bias เช่น fundamental attribution error เป็นรูปแบบอย่างหนึ่งของเหตุผลวิบัติโดยอัตราพื้นฐาน คือ มนุษย์ไม่ใช้ข้อมูลที่ปรากฏโดยทั่วไป (คืออัตราพื้นฐาน) ว่าคนอื่น ๆ มีพฤติกรรมอย่างไรในสถานการณ์คล้าย ๆ กัน แต่กลับไปใช้ข้อมูลเฉพาะคือการแสดงเหตุโดยนิสัย (dispositional attribution) ซึ่งเป็นวิธีที่ง่ายกว่า[9]

มีการถกเถียงอย่างพอสมควรในสาขาจิตวิทยาเกี่ยวกับสถานการณ์ที่เราจะให้ความสำคัญต่อข้อมูลอัตราพื้นฐาน[10][11] นักวิจัยในเรื่องฮิวริสติกและความเอนเอียงได้เน้นหลักฐานการทดลองที่แสดงว่า เรามักจะละเลยอัตราพื้นฐานและทำการอนุมานที่คลาดเคลื่อนไปจากหลักเหตุผลของความน่าจะเป็นเช่น Bayes' theorem ข้อสรุปจากแนวทางของงานวิจัยเหล่านี้ก็คือ กระบวนการความคิดเกี่ยวกับความน่าจะเป็นของมนุษย์มีข้อบกพร่องและเกิดความผิดพลาดได้ง่าย[12] แต่ว่าก็มีนักวิจัยพวกอื่นที่เน้นความสัมพันธ์กันระหว่างกระบวนการทางประชานและรูปแบบของข้อมูล และเสนอว่า ข้อสรุปทั่วไปเช่นนี้ยังไม่สมควร[13][14] เพราะว่าการแสดงปัญหาที่แสดงค่าทางสถิติเหล่านี้ โดยแสดงเป็นค่าอัตราส่วนตามธรรมชาติ แทนที่จะเป็นค่าเศษส่วนบรรทัดฐาน (เช่นค่าเปอร์เซ็นต์) หรือค่าความน่าจะเป็นมีเงื่อนไข จะทำให้มีโอกาสมากขึ้นที่จะแก้ปัญหาได้อย่างถูกต้อง

ลองมาพิจารณาปัญหาตัวอย่างที่ 2 อีกครั้งหนึ่ง สิ่งที่ต้องการจะอนุมานก็คือค่าความน่าจะเป็นที่คนขับรถที่หยุดโดยสุ่มจะเมาเหล้าถ้าเครื่องวิเคราะห์แสดงว่าเมา โดยรูปนัยแล้ว ค่าความน่าจะเป็นสามารถคำนวณได้โดยใช้ Bayes' theorem ดังที่แสดงไว้แล้ว แต่ว่า ก็ยังมีวิธีการแสดงข้อมูลที่เกี่ยวข้องกันในแบบอื่น ๆ ดังตัวอย่างดังต่อไปนี้ ซึ่งความจริงแล้วเป็นปัญหาเดียวกัน

คนขับรถ 1 ใน 1000 เมาแล้วขับ เครื่องวิเคราะห์ลมหายใจไม่เคยพลาดในการตรวจจับคนที่เมาจริง ๆ แต่ว่าในบรรดาคนขับที่ไม่เมา 999 คน จะมี 50 คนที่เครื่องวิเคราะห์จะแสดงว่าเมาอย่างผิด ๆ ถ้าเจ้าหน้าที่ตำรวจหยุดรถโดยสุ่ม แล้วบังคับใช้เครื่องวิเคราะห์กับคนขับ ซึ่งแสดงว่าคนขับเมา เมื่อสมมุติว่าคุณไม่รู้อะไรเลยเกี่ยวกับคนขับ ความน่าจะเป็นว่าคนขับเมาจริง ๆ มีค่าเท่าไร

ในรูปแบบการแสดงปัญหาเช่นนี้ ข้อมูลตัวเลขที่เกี่ยวข้องคือ p (เมา), p (เครื่องแสดงว่าเมา | เมา), และ p (เครื่องแสดงว่าเมา | ไม่เมา) เป็นการแสดงโดยอัตราส่วนที่มีตามธรรมชาติ งานวิจัยโดยการทดลองพบว่า เราจะอนุมานใกล้เคียงกับกฎความน่าจะเป็นของ Bayes มากกว่าเมื่อแสดงปัญหาอย่างนี้ ซึ่งช่วยแก้ปัญหาการละเลยอัตราพื้นฐานทั้งในคนทั่วไป[14] และทั้งในผู้ชำนาญการและนักวิชาการ[15] และดังนั้น องค์กรต่าง ๆ รวมทั้งองค์กรความร่วมมือคอเครนแนะนำให้ใช้รูปแบบเช่นนี้ในการสื่อสารบทความสุขภาพที่มีการกล่าวถึงค่าสถิติ[16] และการสอนให้คนแปลปัญหาที่ต้องใช้เหตุผลโดยกฎความน่าจะเป็นของ Bayes ให้เป็นปัญหาที่แสดงรูปแบบอัตราส่วนโดยธรรมชาติ เป็นวิธีการสอนที่ได้ผลดีกว่าสอนให้ใส่ตัวเลขค่าความน่าจะเป็น (หรืออัตราร้อยละ) เข้าไปใน Bayes' theorem[17] นอกจากนั้นแล้ว ยังมีงานวิจัยที่แสดงด้วยว่า การแสดงอัตราส่วนโดยใช้ตัวแทนสัญลักษณ์ (เช่น แสดงรูปคนตามจำนวนประชากร) จะช่วยเราให้สามารถทำการอนุมานได้ดีขึ้น[17][18][19] ทำไมการแสดงปัญหาเป็นอัตราส่วนโดยธรรมชาติจึงช่วยแก้ปัญหา เหตุผลสำคัญอย่างหนึ่งก็คือเพราะช่วยทำการคำนวณให้ง่ายขึ้น ซึ่งสามารถเห็นได้ถ้าใช้วิธีการคำนวณค่าความน่าจะเป็นที่ต้องการคือ p (เมา|เมื่อเครื่องแสดงว่าเมา) หรือ p (drunk|D)

โดยมี N (drunk ∩ D) หรือ N (เมา ∩ เครื่องแสดงว่าเมา) หมายถึงจำนวนคนขับที่เมาด้วยและเครื่องแสดงว่าเมาด้วย และ N (D) หรือ N (เครื่องแสดงว่าเมา) หมายถึงจำนวนคนขับทั้งหมดที่เครื่องจะแสดงว่าเมา สูตรนี้เท่าเทียมกับสูตรที่แสดงในตัวอย่างที่ผ่านมาแล้ว ซึ่งเป็นไปตามกฎของทฤษฎีความน่าจะเป็น ว่า N (drunk ∩ D) = p (D | drunk) × p (drunk) คือ N (เมา ∩ เครื่องบอกว่าเมา) = p (เครื่องบอกว่าเมา | เมา) × p (เมา) ที่สำคัญก็คือว่า แม้ว่าจริง ๆ แล้วสูตรนี้จะเท่าเทียมกับสูตรที่เป็นไปตามกฎของ Bayes โดยรูปนัย แต่ว่า ตามความรู้สึกหรือตามความคิดแล้ว จะไม่เท่าเทียมกัน การใช้อัตราส่วนโดยธรรมชาติทำการอนุมานให้ง่ายขึ้น เพราะว่า

  • การคำนวณสามารถทำโดยใช้จำนวนธรรมชาติ แทนที่จะใช้เศษส่วนบรรทัดฐาน (เช่นค่าความน่าจะเป็นหรือค่าเปอร์เซ็นต์)
  • ทำการแสดงผลบวกที่ผิดพลาด (false positive) ที่มีในระดับสูงให้ชัดขึ้น
  • อัตราส่วนธรรมชาติแสดงโครงสร้างที่มีเซตข้อมูลซ้อนอยู่ข้างใน[20][21]

ถึงกระนั้น อย่าเข้าใจว่า รูปแบบอัตราส่วนทุก ๆ แบบจะช่วยในการคิดหาค่าความน่าจะเป็น[21][22] คือ อัตราส่วน "โดยธรรมชาติ" จะหมายถึงข้อมูลที่มีรูปแบบเหมือนกับการชักข้อมูล/การหาข้อมูลโดยธรรมชาติจริง ๆ[23] (เช่นตัวอย่างที่สองในแบบปัญหาที่พึ่งแสดง) ไม่ใช่ค่าอัตราส่วนที่ได้มีการทำให้เป็นบรรทัดฐาน (normalized)

ดูเพิ่ม[แก้]

อ้างอิง[แก้]

  1. "ศัพท์บัญญัติอังกฤษ-ไทย, ไทย-อังกฤษ ฉบับราชบัณฑิตสถาน (คอมพิวเตอร์) รุ่น ๑.๑", ให้ความหมายของ base rate ว่า "อัตราพื้นฐาน" และของ fallacy ว่า "เหตุผลวิบัติ"
  2. "Logical Fallacy: The Base Rate Fallacy". Fallacyfiles.org. http://www.fallacyfiles.org/baserate.html. เรียกข้อมูลเมื่อ 2013-06-15. 
  3. B.A. Robinson (2006-03). "Religious Satanism, 16th century Satanism, Satanic Dabbling, etc". Ontario Consultants on Religious Tolerance. http://www.religioustolerance.org/satanism.htm. เรียกข้อมูลเมื่อ 2013-03-24. 
  4. Bar-Hillel, Maya (1980). "The base-rate fallacy in probability judgments". Acta Psychologica 44: 211–233. doi:10.1016/0001-6918(80)90046-3. 
  5. 5.0 5.1 5.2 Kahneman, Daniel; Amos Tversky (1973). "On the psychology of prediction". Psychological Review 80: 237–251. doi:10.1037/h0034747. 
  6. Kahneman, Daniel; Tversky, Amos (1985). "Evidential impact of base rates". In Kahneman, Daniel; Slovic, Paul; Tversky, Amos. Judgment under uncertainty: Heuristics and biases. pp. 153–160. 
  7. extension neglect เป็นประเภทของความเอนเอียงทางประชานที่ปรากฏโดย "ถ้าไม่ได้มีการใส่ใจกับค่านั้นโดยเฉพาะ ขนาดของเซตจะไม่มีอิทธิพลต่อการประเมินค่าเกี่ยวกับเซตนั้น"
  8. Kahneman, Daniel (2000). "Evaluation by moments, past and future". In Daniel Kahneman and Amos Tversky (Eds.). Choices, Values and Frames. 
  9. Nisbett, Richard E.; E. Borgida, R. Crandall & H. Reed (1976). "Popular induction: Information is not always informative". In J. S. Carroll & J. W. Payne (Eds.). Cognition and social behavior 2. pp. 227–236. 
  10. doi:10.1017/S0140525X00041157
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand
  11. doi:10.1017/S0140525X07001653
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand
  12. doi:10.1126/science.185.4157.1124
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand
  13. Cosmides, Leda; John Tooby (1996). "Are humans good intuitive statisticians after all? Rethinking some conclusions of the literature on judgment under uncertainty". Cognition 58: 1–73. doi:10.1016/0010-0277(95)00664-8. 
  14. 14.0 14.1 doi:10.1037/0033-295X.102.4.684
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand
  15. doi:10.1126/science.290.5500.2261
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand
  16. doi:10.1002/14651858.CD006776.pub2
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand
  17. 17.0 17.1 doi:10.1037/0096-3445.130.3.380
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand
  18. doi:10.1002/acp.1460
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand
  19. doi:10.1136/bmj.324.7341.827
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand
  20. doi:10.1016/S0010-0277 (00)00133-5
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand
  21. 21.0 21.1 doi:10.1016/S0010-0277 (02)00050-1
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand Full Article PDF (102 KB)
  22. doi:10.1037/0033-295X.106.2.425
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand Full Article PDF (649 KB)
  23. doi:10.1007/978-1-4612-4308-3_27
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand

แหล่งข้อมูลอื่น[แก้]