จำนวนฟีโบนัชชี

จากวิกิพีเดีย สารานุกรมเสรี
(เปลี่ยนทางจาก เลขฟีโบนัชชี)
การจัดเรียงสี่เหลี่ยมจัตุรัสที่มีความยาวด้านเท่ากับจำนวนฟีโบนัชชี

จำนวนฟีโบนัชชี หรือ เลขฟีโบนัชชี (อังกฤษ: Fibonacci number) คือจำนวนต่าง ๆ ที่อยู่ในลำดับจำนวนเต็มดังต่อไปนี้

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946 ... (ลำดับ OEISA000045)

โดยมีนิยามของความสัมพันธ์ว่า จำนวนถัดไปเท่ากับผลบวกของจำนวนสองจำนวนก่อนหน้า และสองจำนวนแรกก็คือ 0 และ 1 ตามลำดับ และลำดับของจำนวนดังกล่าวก็จะเรียกว่า ลำดับฟีโบนัชชี (อังกฤษ: Fibonacci sequence)

หากเขียนให้อยู่ในรูปของสัญลักษณ์ ลำดับ Fn ของจำนวนฟีโบนัชชีนิยามขึ้นด้วยความสัมพันธ์เวียนเกิดดังนี้

F_n = F_{n-1} + F_{n-2}\!

โดยกำหนดค่าเริ่มแรกให้ [1]

F_0 = 0;\; F_1 = 1

ชื่อของจำนวนฟีโบนัชชีตั้งขึ้นเพื่อเป็นเกียรติแก่นักคณิตศาสตร์ชาวอิตาลีชื่อ เลโอนาร์โดแห่งปีซา (Leonardo de Pisa) ซึ่งเป็นที่รู้จักกันในนามฟีโบนัชชี (Fibonacci) ผู้ค้นพบจำนวนฟีโบนัชชีในต้นศตวรรษที่ 13

รูปปิด[แก้]

เนื่องจากลำดับฟีโบนัชชีเป็นลำดับที่นิยามด้วยความสัมพันธ์เวียนบังเกิดเชิงเส้น เราจึงสามารถหารูปปิดของจำนวนฟีโบนัชชีได้ โดยสมการแสดงรูปปิดของจำนวนฟีโบนัชชี มีชื่อเรียกว่า สูตรของบิเนต์ มีดังต่อไปนี้

F\left(n\right) = {{\varphi^n-(1-\varphi)^n} \over {\sqrt 5}}

โดย \varphi = (1 + \sqrt{5})/2 \approx 1.618 เป็นตัวเลขที่รู้จักกันโดยทั่วไปว่าอัตราส่วนทองคำ

การพิสูจน์:

พิจารณาสมการพหุนาม x^2=x+1 เมื่อคูณทั้งสองข้างด้วย x^{n-1} เราได้ว่า

x^{n+1} = x^n + x^{n-1}\,

ผลเฉลยของสมการ x^2=x+1 ได้แก่ \varphi และ 1-\varphi ดังนั้น

\varphi^{n+1}    \, = \varphi^n + \varphi^{n-1}\, และ
(1-\varphi)^{n+1}\, = (1-\varphi)^n + (1-\varphi)^{n-1}\,

พิจารณาฟังก์ชัน

F_{a,b}(n) = a\varphi^n+b(1-\varphi)^n เมื่อ a และ b เป็นจำนวนจริงใดๆ

เราได้ว่าฟังก์ชันเหล่านี้สอดคล้องกับความสัมพันธ์เวียนบังเกิดที่ใช้นิยมเลขฟีโบนัชชี

F_{a,b}(n+1)\,  = a\varphi^{n+1}+b(1-\varphi)^{n+1}
=a(\varphi^{n}+\varphi^{n-1})+b((1-\varphi)^{n}+(1-\varphi)^{n-1})
=a{\varphi^{n}+b(1-\varphi)^{n}}+a{\varphi^{n-1}+b(1-\varphi)^{n-1}}
=F_{a,b}(n)+F_{a,b}(n-1)\,

เลือก a=1/\sqrt 5 and b=-1/\sqrt 5 เราได้ว่า

F_{a,b}(0)=\frac{1}{\sqrt 5}-\frac{1}{\sqrt 5}=0=F(0)\,\!

และ

F_{a,b}(1)=\frac{\varphi}{\sqrt 5}-\frac{(1-\varphi)}{\sqrt 5}=\frac{-1+2\varphi}{\sqrt 5}=\frac{-1+(1+\sqrt 5)}{\sqrt 5}=1=F(1)

เราสามารถใช้ข้อความนี้เป็นฐานของการพิสูจน์แบบอุปนัยเชิงคณิตศาสตร์ของข้อความ F_{a,b}(n) = F(n) และใช้เอกลักษณ์ของ F_{a,b} พิสูจน์กรณีอุปนัยได้ เราจึงสามารถสรุปว่า

F(n)={{\varphi^n-(1-\varphi)^n} \over {\sqrt 5}} สำหรับจำนวนเต็มที่ไม่เป็นลบ n ทุกตัว

เนื่องจาก |1-\varphi|^n/\sqrt 5 < 1/2 สำหรับทุกๆ n>0\,\! เราจึงได้ว่า F_n\,\! จึงเป็นจำนวนเต็มที่ใกล้ \varphi^n/\sqrt 5 ที่สุด หรือเขียนเป็นประโยคสัญลักษณ์โดยใช้ฟังก์ชันพื้น (floor function) ได้ว่า

F(n)=\bigg\lfloor\frac{\varphi^n}{\sqrt 5} + \frac{1}{2}\bigg\rfloor

ความสัมพันธ์กับอัตราส่วนทองคำ[แก้]

โยฮันน์ เคปเลอร์ ค้นพบว่าอัตราส่วนของจำนวนฟีโบนัชชีที่ติดกันลู่เข้าสู่อัตราส่วนทองคำ กล่าวคือ

\frac{F(n+1)}{F(n)} ลู่เข้าสู่อัตราส่วนทองคำ \varphi

การพิสูจน์:

สำหรับจำนวนจริง a \ne 0, b \ne 0 เราได้ว่า

\lim_{n\to\infty}\frac{F_{a,b}(n+1)}{F_{a,b}(n)} =\lim_{n\to\infty}\frac{a\varphi^{n+1}-b(1-\varphi)^{n+1}}{a\varphi^n-b(1-\varphi)^n}
=\lim_{n\to\infty}\frac{a\varphi-b(1-\varphi)(\frac{1-\varphi}{\varphi})^n}{a-b(\frac{1-\varphi}{\varphi})^n}
 = \varphi,

เนื่องจาก \left |{\frac{1-\varphi}{\varphi}}\right | < 1 ดังนั้น \lim_{n\to\infty}(\frac{1-\varphi}{\varphi})^n=0

เนื่องจากจำนวนฟีโบนัชชีคือ F_{a,b} เมื่อ a = 1/\sqrt{5} และ b = -1/\sqrt{5} ลิมิตของอัตราส่วนของเลขฟีโบนัชชีที่ติดกันจึงสอดคล้องกับสมการข้างบนด้วย

รูปเมทริกซ์[แก้]

ระบบสมการความแตกต่างเชิงเส้นที่อธิบายลำดับฟีโบนัชชีได้คือ

\begin{align}
 {F_{k+2} \choose F_{k+1}} &= \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} {F_{k+1} \choose F_{k}} \\
 \vec F_{k+1} &= A \vec F_{k}
\end{align}

และมีรูปปิดคือ

\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix}.

ด้วยรูปปิดดังกล่าว การคำนวณค่าฟีโบนัชชีจึงสามารถคำนวณได้โดยใช้จำนวนการดำเนินการเลขคณิต O(log n) หรือใช้เวลา O(M(n) log(n)) โดยที่ M(n) คือเวลาในการคูณเลข n หลัก 2 ตัว[2] โดยใช้วิธียกกำลังโดยการยกกำลังสอง กล่าวคือ

 x^n=     
    \begin{cases}
                x \, ( x^{2})^{\frac{n - 1}{2}}, & \mbox{if } n \mbox{ is odd} \\
                (x^{2})^{\frac{n}{2}} , & \mbox{if } n \mbox{ is even}.
     \end{cases}

เมื่อให้ x เป็นเมทริกซ์ จึงสามารถหาค่า Fn ได้ในเวลาที่กล่าวไว้แล้ว

ลำดับฟิโบนัชชีในธรรมชาติ[แก้]

สิ่งที่ปรากฏตามธรรมชาติมิได้มีแต่รูปร่างง่ายๆ เท่านั้น บางอย่างมีรูปร่างที่มีแบบแผนทางคณิตศาสตร์ที่ยุ่งยากขึ้นไปอีก ตัวอย่างที่น่าสนใจของธรรมชาติที่เป็นไปตามกฎเกณฑ์ของ คณิตศาสตร์ชั้นสูง ได้แก่ เส้นโค้งก้นหอย ซึ่งมีคุณสมบัติว่า ถ้าลากเส้นตรงจากจุดหลายของเกลียวข้างในสุดไปตัดกับเส้นโค้งแล้ว มุมที่เกิดจากเส้นตรงนั้นกับเส้นสัมผัสกับเส้นโค้ง ณ จุดตัดจะเท่ากันเสมอดังรูป มุม A = มุม B = มุม C เส้นโคังที่มีลักษณะเป็นก้นหอยจะพบได้ในหอยบางชนิด เช่น หอยทาก

นอกจากนี้ยังมีความโค้งของงาช้าง ความโค้งของเกสรดอกทานตะวัน ตาสับปะรดและตาลูกสน ก็มีลักษณะคล้ายส่วนของเส้นโค้งก้นหอยด้วย ยังมีเรื่องที่น่าสนใจในธรรมชาติที่เกี่ยวข้องกับคณิตศาสตร์อีก จากการศึกษาเส้นโค้งของตาลูกสน ตาสับปะรด และเกสรดอกทานตะวัน จะเห็นว่าเส้นโค้งที่หมุนตามเข็มนาฬิกาของตาลูกสนมีจำนวน 5 เส้น และหมุนทวนเข็มนาฬิกามีจำนวน 3 เส้น หรืออาจกล่าวได้ว่า จำนวนเส้นโค้งสองแบบมีอัตราส่วนเป็น 5 ต่อ 8 สำหรับตาสับปะรด เส้นโค้งตามเข็มนาฬิกาและทวนเข็มนาฬิกา มีอัตราส่วนเป็น 8 ต่อ 13 เส้นโค้งที่เกิดจากเกสรดอกทานตะวันตามเข็มนาฬิกา และทวนเข็มนาฬิกามีอัตราส่วนเป็น 21 ต่อ 34 ปรากฏการณ์นี้เป็นไปตามกฎเกณฑ์ของเลขฟีโบนัชชี

การนำไปใช้[แก้]

จำนวนฟีโบนัชชีมีความสำคัญในการวิเคราะห์ประสิทธิภาพของยูคลีเดียนอัลกอริทึมซึ่งใช้ในการหาตัวหารร่วมมากของจำนวนเต็มสองจำนวน โดยยูคลิเดียนอัลกอริทึมจะทำงานได้ช้าที่สุดถ้าข้อมูลเข้าเป็นจำนวนฟีโบนัชชีสองตัวที่ติดกัน

ยูริ มาทิยาเซวิช พิสูจน์ได้ว่าจำนวนฟีโบนัชชีมีนิยามในรูปของผลเฉลยของสมการไดโอแฟนไทน์ ซึ่งความจริงข้อนี้นำไปสู่การแก้ปัญหาข้อที่ 10 ของฮิลแบร์ท

จำนวนเต็มทุกจำนวนสามารถเขียนอยู่ในรูปของผลบวกของจำนวนฟีโบนัชชีที่ไม่ติดกินได้เพียงแบบเดียวเท่านั้น ความจริงข้อนี้เป็นที่รู้จักกันในนามทฤษฎีบทของเซคเคนดอร์ฟ การเขียนจำนวนเต็มในรูปดังกล่าวเรียกว่า การนำเสนอแบบเซคเคนดอร์ฟ

ตัวกำเนิดจำนวนสุ่มเทียมบางตัวใช้จำนวนฟีโบนัชชีเป็นเครื่องมือในการสร้างเลขสุ่ม

จำนวนฟีโบนัชชีถูกใช้กำหนดความยาวของส่วนประกอบต่างๆ ของงานศิลปะ และถูกใช้ในการเทียบเสียงเครื่องดนตรี ผลงานเพลงที่มีความเกี่ยวข้องกับจำนวนฟีโบนัชชี ได้แก่ เพลงสำหรับเครื่องสาย เครื่องประกอบจังหวะ และซีเลสตา ของ เบลา บาท็อก, และเพลงแลเทอราทัส ของวงทูล ซึ่งมีจำนวนพยางค์ในวรรคของเนื้อร้องเท่ากับจำนวนฟีโบนัชชี ("Black/Then/White are/All I see/In my infancy/Red and yellow then came to be")

อ้างอิง[แก้]

  • Ball, Keith M. (2003). "Chapter 8: Fibonacci's Rabbits Revisited". Strange Curves, Counting Rabbits, and Other Mathematical Explorations. Princeton University Press. ISBN 0691113211. 
  • Lucas, Édouard (1891). Théorie des nombres 1. Gauthier-Villars.