การระเบิดรุนแรง

จากวิกิพีเดีย สารานุกรมเสรี
ไปยังการนำทาง ไปยังการค้นหา
การระเบิดรุนแรงของวัถุระเบิด ทีเอนที 500 ตันในระหว่างปฏิบัติการเซย์เลอร์แฮต (Operation Sailor Hat) คลื่นกระแทกลูกแรกสามารถมองเห็นได้บนผิวน้ำ และเมฆควบแน่นกระแทกก็เห็นได้อยู่ด้านบน

การระเบิดรุนแรง (อังกฤษ: detonation) คือกระบวนการการเผาไหม้ชนิดหนึ่งซึ่งมีหน้าการคายความร้อนที่เคลื่อนที่ผ่านตัวกลางด้วยความเร็วเหนือเสียงที่ต่อมาผลิตหน้าคลื่นกระแทกที่แพร่อยู่ข้างหน้ามัน วัตถุระเบิดมาตรฐานทั้งแบบแข็งและเหลว[1] รวมทั้งแก๊สไวปฏิกิริยาทำให้เกิดการระเบิดรุนแรงได้ ความเร็วการระเบิดรุนแรง (detonation velocity) ในวัตถุระเบิดแบบแข็งกับเหลวนั้นสูงกว่าแบบแก๊สอย่างมาก ทำให้สามารถสังเกตระบบคลื่นในรายละเอียดที่มากขึ้น (ความละเอียดของภาพสูง; Image resolution)

เชื้อเพลิงมีความหลากหลายอย่างมากไม่ว่าจะปรากฏในรูปของแก๊ส หมอกละออง หรือฝุ่นแขวนลอย ออกซิแดนต์ (oxidizing agent) เช่นแฮโลเจน โอโซน ไฮโดรเจนเพอร์ออกไซด์ และออกไซด์ของไนโตรเจน การระเบิดรุนแรงแบบแก๊สมักจะเกี่ยวข้องกับส่วนผสมของเชื้อเพลิงและออกซิแดนต์ในอัตราส่วนที่มีความไวไฟต่ำกว่ามาตรฐานอยู่ไม่มาก ส่วนใหญ่เกิดขึ้นในระบบจำกัด แต่บางครั้งก็เกิดขึ้นได้ในเมฆไอ (vapour cloud) วัสดุอื่น ๆ เช่นอะเซทิลีน โอโซน และไฮโดรเจนเพอร์ออกไซด์สามารถระเบิดได้แม้ไม่มีไดออกซิเจน (อัญรูปหนึ่งของออกซิเจน; dioxygen)[2][3]

การระเบิดรุนแรงถูกค้นพบในปี ค.ศ. 1881 โดยนักวิทยาศาสตร์ชาวฝรั่งเศสสองคู่ คือ มาร์เซอลัง แบร์เทอโลต์ (Marcellin Berthelot) กับพี. วิเยย (Paul Marie Eugène Vieille) [4] และแอร์เนสต์-ฟรังซัวส์ มัลลารด์ (Ernest-François Mallard) กับอองรี หลุยส์ เลอ ชาเตอลิเอ (Henry Louis Le Chatelier)[5] การคาดการณ์ทางคณิตศาสตร์ของการแพร่ถูกดำเนินการเป็นครั้งแรกโดยเดวิด แชปแมน (David Chapman) ในปี ค.ศ. 1899[6] และโดยเอมิล ฌูเกต์ (Émile Jouguet) ในปี ค.ศ. 1905,[7] 1906[8] และ 1917[9] ยาคอฟ เซลโดวิช (Yakov Zeldovich), จอห์น ฟอน นอยมันน์, และ แวร์เนอร์ เดอริง (W. Doering) ได้สร้างความก้าวหน้าต่อความเข้าใจที่มีต่อการระเบิดอย่างรุนแรงในช่วงต้นทศวรรษ 1940s

ทฤษฎี[แก้]

ทฤษฎีแชปแมน-ฌูเกต์ (Chapman-Jouguet condition) เป็นทฤษฎีพื้นฐานที่สุดที่คาดการณ์พฤติกรรมของการระเบิดรุนแรงในแก๊สซึ่งถูกพัฒนาขึ้นในช่วงปลายคริสต์ศตวรรษที่ 20 ทฤษฎีนี้จำลองการระเบิดรุนแรงเป็นคลื่นกระแทกที่มาพร้อมกับการคายความร้อนด้วยชุดของสมการพีชคณิตแบบง่าย ๆ ทฤษฎีเช่นนี้จำกัดกระบวนการทางเคมีและการแพร่ไว้ในพื้นที่ที่บางเป็นกณิกนันต์

ทฤษฎีที่ซับซ้อนกว่าถูกคิดขึ้นมาในยุคสงครามโลกครั้งที่สองโดยยาคอฟ เซลโดวิช, จอห์น ฟอน นอยมันน์, และแวร์เนอร์ เดอริง โดยอิสระจากกัน[10][11][12] ทฤษฎีนี้ซึ่งปัจจุบันเรียกว่าตัวแบบการระเบิดรุนแรง ZND (ZND detonation model) ยอมรับถึงการมีอยู่ของปฏิกิริยาเคมีที่เกิดขึ้นในอัตราจำกัด ดังนั้นจึงอธิบายการระเบิดรุนแรงเป็นคลื่นกระแทกที่บางเป็นกณิกนันต์ที่ตามด้วยพื้นที่ที่มีปฏิกิริยาเคมีคลายความร้อน เมื่อใช้คลื่นกระแทกเป็นจุดอ้างอิงที่อยู่นิ่งแล้ว การไหลที่ตามหลังคลื่นจะมีความเร็วต่ำกว่าเสียง พลังงานที่ถูกปล่อยออกมาจากปฏิกิริยาเคมีที่เคลื่อนที่ข้างหลังติดหน้าคลื่นจึงสามารถจ่ายพลังงานให้กับคลื่นกระแทกผ่านทางเสียงได้ นี่คือเงื่อนไขแชปแมน-ฌูเกต์ (Chapman-Jouguet condition)[13][14] มีหลักฐานบางส่วนที่ชี้ว่าพื้นที่ปฏิกิริยามีคุณสมบัติกึ่งโลหะในวัตถุระเบิดบางชนิด (ไนโตรมีเทน; nitromethane)[15]

ทั้งสองทฤษฎีอธิบายหน้าคลื่นหนึ่งมิติที่คงตัว แต่ทว่าในช่วงปี ค.ศ. 1960s การทดลองแสดงให้เห็นว่าการระเบิดรุนแรงในแก๊สส่วนใหญ่จะมีโครงสร้างสามมิติที่ไม่คงตัวซึ่งสามารถคาดการณ์ด้วยทฤษฎีหนึ่งมิติแบบคงตัวได้โดยเฉลี่ยเท่านั้น และแน่นอนคลื่นแบบนั้นจะสลายไปในขณะที่โครงสร้างถูกทำลาย[16][17] เราสามารถใช้ทฤษฎีการระเบิดรุนแรงวูด-เคิร์กวูด (Wood-Kirkwood detonation theory) เพื่อแก้ไขในเรื่องข้อจำกัดเหล่านี้บางข้อ[18]

การศึกษาการทดลองเปิดเผยเงื่อนไขที่จำเป็นในการแพร่ของหน้าคลื่นแบบนี้ ระยะของสัดส่วนการผสมกันระหว่างเชื้อเพลิงกับตัวออกซิไดซ์หรือสารที่สลายตัวด้วยตัวเองและสารเฉื่อยจะอยู่ต่ำกว่าเส้นจำกัดความไวไฟเล็กน้อยสำหรับการระเบิดรุนแรงในพื้นที่บรรจุที่จำกัด[19] มีการแสดงอิทธิพลของการเพิ่มความเข้มข้นของตัวละลายกับการขยายตัวของเซลล์ระเบิดแต่ละเซลล์ให้เห็น[20] ในทางคล้ายกัน ขนาดของเซลล์ก็ใหญ่ขึ้นในขณะที่ความดันต้นลดลง[21] ในเมื่อขนาดของเซลล์ต้องเข้ากับขนาดขั้นต่ำของบรรจุภัณฑ์ คลื่นใด ๆ ที่ถูกเอาชนะโดยตัวจุดระเบิดก็จะสลายไป

การจำลองทางคณิตศาสตร์มีความก้าวหน้าในการคาดการณ์การไหลที่ซับซ้อนข้างหลังปฏิกิริยาที่เหนี่ยวนำให้เกิดคลื่นกระแทกอยู่อย่างต่อเนื่อง[22][23] ณ ปัจจุบันยังไม่มีแบบจำลองใดที่อธิบายได้อย่างเพียงพอว่าโครงสร้างนั้นเกิดขึ้นและคงตัวอยู่หลังคลื่นที่ไม่ถูกจำกัดได้อย่างไร

การประยุกต์[แก้]

เหตุหลักของความเสียหายจากการระเบิดรุนแรงคือหน้าการระเบิดที่เร็วกว่าเสียงในบริเวณรอบด้านเมื่อใช้ในอุปกรณ์ระเบิด (คลื่นกระแทกที่ทรงพลัง) ซึ่งนี่ต่างจากการลุกไหม้อย่างมีนัยยะสำคัญซึ่งการลุกไหม้มีคลื่นการคลายความร้อนที่ความเร็วต่ำกว่าเสียง เพราะฉะนั้นการระเบิดรุนแรงมักใช้เพื่อทำลายล้างในขณะที่การลุกไหม้จะถูกใช้ในการเร่งกระสุนหรือขีปนาวุธ แต่คลื่นของการระเบิดรุนแรงก็อาจนำมาใช้ในทางที่ทำลายล้างน้อยกว่า เช่นการพอกสารเคลือบลงบนพื้นผิว[24] การทำความสะอาดเครื่องมือ (เช่นการกำจัดเศษถ่านหิน[25]) หรือแม้แต่การเชื่อมอัดระเบิด (explosive welding) โลหะที่เชื่อมด้วยวิธีปกติไม่ได้ให้เชื่อมเข้าด้วยกัน เครื่องยนต์ระเบิดพัลส์ (Pulse detonation engine) ใช้คลื่นระเบิดเพื่อขับเคลื่อนในการบินและอวกาศ[26] อากาศยานที่ใช้เครื่องยนต์ระเบิดพัลส์ขึ้นบินเป็นครั้งแรกที่ท่าอากาศยานและอวกาศยานโมฮาวี (Mojave Air & Space Port) ในวันที่ 31 มกราคม ปี ค.ศ. 2008[27]

ในเครื่องยนต์และอาวุธปืน[แก้]

การระเบิดรุนแรงโดยไม่เจตนาเป็นปัญหาในบางอุปกรณ์ที่ต้องการการลุกไหม้ เรียกว่าเครื่องยนต์น็อก (engine knocking) ในเครื่องยนต์สันดาปภายใน การน็อกทำให้เสียพลัง เครื่องร้อนเกิน และในที่สุดเครื่องก็อาจล้มเหลวได้[28] ส่วนในอาวุธปืน การระเบิดรุนแรงอาจทำให้เกิดการล้มเหลวอย่างมหันต์หรืออาจถึงแก่ชีวิตได้

ดูเพิ่ม[แก้]

อ้างอิง[แก้]

  1. Fickett; Davis (1979). Detonation. Univ. California Press. ISBN 978-0-486-41456-0.
  2. Stull (1977). Fundamentals of fire and explosion. Monograph Series. 10. A.I.Chem.E. p. 73.
  3. Urben, Peter; Bretherick, Leslie (2006). Bretherick's Handbook of Reactive Chemical Hazards (7th ed.). London: Butterworths. ISBN 978-0-12-372563-9.
  4. 6 M. Berthelot and P. Vieille, “On the velocity of propagation of explosive processes in gases,” Comp. Rend. Hebd. Séances Acad. Sci., Vol. 93, pp. 18-21, 1881
  5. 5 E. Mallard and H. L. Le Chatelier, “On the propagation velocity of burning in gaseous explosive mixtures,” Comp. Rend. Hebd. Séances Acad. Sci., Vol. 93, pp. 145-148, 1881
  6. Chapman, D. L. (1899). VI. On the rate of explosion in gases. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 47(284), 90-104.
  7. Jouguet, E. (1905). On the propagation of chemical reactions in gases. J. de mathematiques Pures et Appliquees, 1(347-425), 2.
  8. Jouguet, E. J. (1906). Mathem. Pures Appl. 1. 1905. P. 347-425. And 2.
  9. Jouguet, É. (1917). L'œuvre scientifique de Pierre Duhem. Doin.
  10. Zel'dovich; Kompaneets (1960). Theory of Detonation. New York: Academic Press. ASIN B000WB4XGE. OCLC 974679.
  11. von Neumann, John (1942). Progress report on "Theory of Detonation Waves" (รายงาน). OSRD Report No. 549. Ascension number ADB967734. Archived from the original on 2011-07-17. https://web.archive.org/web/20110717145048/http://oai.dtic.mil/oai/oai?verb=getRecord. เรียกข้อมูลเมื่อ 2020-10-16. 
  12. Doring, W. (1943). "Über den Detonationsvorgang in Gasen". Annalen der Physik. 43 (6–7): 421–436. Bibcode:1943AnP...435..421D. doi:10.1002/andp.19434350605.
  13. Chapman, David Leonard (January 1899). "On the rate of explosion in gases". Philosophical Magazine. Series 5. London. 47 (284): 90–104. doi:10.1080/14786449908621243. ISSN 1941-5982. LCCN sn86025845.
  14. Jouguet, Jacques Charles Emile (1905). "Sur la propagation des réactions chimiques dans les gaz" [On the propagation of chemical reactions in gases] (PDF). Journal de Mathématiques Pures et Appliquées. 6. 1: 347–425. คลังข้อมูลเก่า เก็บจาก แหล่งเดิม (PDF) เมื่อ 2013-10-19. สืบค้นเมื่อ 2013-10-19. Continued in Continued in Jouguet, Jacques Charles Emile (1906). "Sur la propagation des réactions chimiques dans les gaz" [On the propagation of chemical reactions in gases] (PDF). Journal de Mathématiques Pures et Appliquées. 6. 2: 5–85. คลังข้อมูลเก่า เก็บจาก แหล่งเดิม (PDF) เมื่อ 2015-10-16.
  15. Reed, Evan J.; Riad Manaa, M.; Fried, Laurence E.; Glaesemann, Kurt R.; Joannopoulos, J. D. (2007). "A transient semimetallic layer in detonating nitromethane". Nature Physics. 4 (1): 72–76. Bibcode:2008NatPh...4...72R. doi:10.1038/nphys806.
  16. Edwards, D.H.; Thomas, G.O. & Nettleton, M.A. (1979). "The Diffraction of a Planar Detonation Wave at an Abrupt Area Change". Journal of Fluid Mechanics. 95 (1): 79–96. Bibcode:1979JFM....95...79E. doi:10.1017/S002211207900135X.
  17. D. H. Edwards; G. O. Thomas; M. A. Nettleton (1981). A. K. Oppenheim; N. Manson; R.I. Soloukhin; J.R. Bowen (บ.ก.). "Diffraction of a Planar Detonation in Various Fuel-Oxygen Mixtures at an Area Change". Progress in Astronautics & Aeronautics. 75: 341–357. doi:10.2514/5.9781600865497.0341.0357. ISBN 978-0-915928-46-0.
  18. Glaesemann, Kurt R.; Fried, Laurence E. (2007). "Improved wood–kirkwood detonation chemical kinetics". Theoretical Chemistry Accounts. 120 (1–3): 37–43. doi:10.1007/s00214-007-0303-9.
  19. Nettleton, M. A. (1980). "Detonation and flammability limits of gases in confined and unconfined situations". Fire Prevention Science and Technology (23): 29. ISSN 0305-7844.
  20. Munday, G.; Ubbelohde, A.R. & Wood, I.F. (1968). "Fluctuating Detonation in Gases". Proceedings of the Royal Society A. 306 (1485): 171–178. Bibcode:1968RSPSA.306..171M. doi:10.1098/rspa.1968.0143.
  21. Barthel, H. O. (1974). "Predicted Spacings in Hydrogen-Oxygen-Argon Detonations". Physics of Fluids. 17 (8): 1547–1553. Bibcode:1974PhFl...17.1547B. doi:10.1063/1.1694932.
  22. Oran; Boris (1987). Numerical Simulation of Reactive Flows. Elsevier Publishers.
  23. Sharpe, G.J.; Quirk, J.J. (2008). "Nonlinear cellular dynamics of the idealized detonation model: Regular cells" (PDF). Combustion Theory and Modelling. 12 (1): 1–21. Bibcode:2007CTM....12....1S. doi:10.1080/13647830701335749.
  24. Nikolaev, Yu.A.; Vasil'ev, A.A.; Ul'yanitskii & B.Yu. (2003). "Gas Detonation and its Application in Engineering and Technologies (Review)". Combustion, Explosion, and Shock Waves. 39 (4): 382–410. doi:10.1023/A:1024726619703.
  25. Huque, Z.; Ali, M.R. & Kommalapati, R. (2009). "Application of pulse detonation technology for boiler slag removal". Fuel Processing Technology. 90 (4): 558–569. doi:10.1016/j.fuproc.2009.01.004.
  26. Kailasanath, K. (2000). "Review of Propulsion Applications of Detonation Waves". AIAA Journal. 39 (9): 1698–1708. Bibcode:2000AIAAJ..38.1698K. doi:10.2514/2.1156.
  27. Norris, G. (2008). "Pulse Power: Pulse Detonation Engine-powered Flight Demonstration Marks Milestone in Mojave". Aviation Week & Space Technology. 168 (7): 60.
  28. Andre Simon. "Don't Waste Your Time Listening for Knock..." High Performance Academy.

แหล่งข้อมูลอื่น[แก้]