อัตราเร็วของเสียง
ลิงก์ข้ามภาษาในบทความนี้ มีไว้ให้ผู้อ่านและผู้ร่วมแก้ไขบทความศึกษาเพิ่มเติมโดยสะดวก เนื่องจากวิกิพีเดียภาษาไทยยังไม่มีบทความดังกล่าว กระนั้น ควรรีบสร้างเป็นบทความโดยเร็วที่สุด |
อัตราเร็วของเสียง คือ ระยะทางที่เสียงเดินทางไปในตัวกลางใด ๆ ได้ในหนึ่งหน่วยเวลา โดยทั่วไปเสียงเดินทางในอากาศที่มีอุณหภูมิ 25°C (= 298,15 K) ได้ประมาณ 346 เมตร/วินาที และในอากาศที่อุณหภูมิ 20°C ได้ประมาณ 343 เมตร/วินาที อัตราเร็วที่เสียงเดินทางได้นั้นอาจมีค่ามากขึ้นหรือน้อยลงขึ้นอยู่กับอุณหภูมิของตัวกลางเป็นหลัก และอาจได้รับอิทธิพลจากความชื้นบ้างเล็กน้อย แต่ไม่ขึ้นกับความดันอากาศ
เนื่องจากการเดินทางของเสียงอาศัยการสั่นของโมเลกุลของตัวกลาง ดังนั้นเสียงจะเดินทางได้เร็วขึ้นหากตัวกลางมีความหนาแน่นมาก ทำให้เสียงเดินทางได้เร็วในของแข็ง แต่เดินทางไม่ได้ในอวกาศ เพราะอวกาศเป็นสุญญากาศจึงไม่มีโมเลกุลของตัวกลางอยู่
การคำนวณอัตราเร็วของเสียง
[แก้]อัตราเร็วของเสียง โดยทั่วไปคำนวณหาได้จาก
โดย
- คือ สัมประสิทธิ์ของความแข็งเกร็ง (coefficient of stiffness)
- คือ ความหนาแน่น
ดังนั้น อัตราเร็วของเสียง จะเพิ่มขึ้นตามความแข็งเกร็งของวัสดุ และ ลดลงเมื่อความหนาแน่นเพิ่มขึ้น
อัตราเร็วของเสียงในของแข็ง
[แก้]ของแข็งนั้นมีค่าความแข็งเกร็งไม่เป็นศูนย์ ทั้งต่อแรงบีบอัด หรือ การเปลี่ยนปริมาตร (volumetric deformation) และ แรงเฉือน (Shear Deformation) ดังนั้นจึงเป็นไปได้ที่จะกำเนิดคลื่นเสียงที่มีความเร็วต่างกัน ขึ้นกับรูปแบบของคลื่น
ในแท่งของแข็ง ซึ่งมีขนาดความหนา (หรือขนาดของตัวกลาง ในแนวตั้งฉากกับการเคลื่อนที่ของคลื่น) เล็กกว่าความยาวคลื่นมาก อัตราเร็วของเสียงหาได้จาก
โดย
- คือ มอดุลัสของยัง
- คือ ความหนาแน่น
ดังนั้น ในเหล็ก อัตราเร็วของเสียงจะมีค่าประมาณ 5100 m/s
ในแท่งของแข็งหนา หรือ ขนาดด้านข้างของตัวกลาง ใหญ่กว่าความยาวคลื่น เสียงจะเดินทางได้เร็วกว่า อัตราเร็วของเสียงสามารถหาได้จากการแทนค่ามอดุลัสของยัง ด้วยมอดุลัสคลื่นหน้าราบ (en:plane wave modulus) ซึ่งหาได้จากมอดุลัสของยังและอัตราส่วนของปัวซง
ดังนั้น อัตราเร็วของเสียง
- .
สำหรับคลื่นตามขวางนั้น มอดุลัสของยัง จะถูกแทนด้วยค่ามอดุลัสของแรงเฉือน (en:shear modulus)
- .
จะเห็นได้ว่า อัตราเร็วของเสียงในของแข็งขึ้นกับความหนาแน่น ของตัวกลางเท่านั้น โดยไม่ขึ้นกับอุณหภูมิ ของแข็ง เช่น เหล็ก สามารถนำคลื่นด้วยความเร็วที่สูงกว่าอากาศมาก
อัตราเร็วของเสียงในของเหลว
[แก้]ของเหลวจะมีความแข็งเกร็งต่อแรงอัดเท่านั้น โดยไม่มีความแข็งเกร็งต่อแรงเฉือน ดังนั้นอัตราเร็วของเสียงในของเหลวหาได้โดย
โดย
- คือ มอดุลัสของการอัดแอเดียแบติก (adiabatic en:bulk modulus)
อัตราเร็วของเสียงในก๊าซ
[แก้]ในก๊าซ ค่า สามารถประมาณโดย
โดย
- คือ ดัชนีแอเดียแบติก (en:adiabatic index) บางครั้งใช้สัญลักษณ์ γ
- คือ ความดัน
ดังนั้น อัตราเร็วของเสียงในก๊าซสามารถคำนวณได้โดย
ในกรณี ก๊าซในอุดมคติ (en:ideal gas) จะได้
โดย
- (287.05 J/(kg·K) สำหรับอากาศ) คือ ค่าคงที่ของก๊าซ (en:gas constant) สำหรับอากาศ: ปกติในทางอากาศพลศาสตร์ ค่านี้หาจาก การหารค่าคงที่ของก๊าซสากล (J/(mol·K)) ด้วย ค่ามวลโมล (en:molar mass) ของอากาศ
- คือ ค่า ดัชนีแอเดียแบติก (en:adiabatic index) (เท่ากับ 1.402 สำหรับอากาศ)
- คือ ค่าอุณหภูมิสัมบูรณ์ (เคลวิน)
(นิวตันนั้นค้นพบวิธีการหาค่าอัตราเร็วของเสียงก่อนพัฒนาการของอุณหพลศาสตร์ และได้ใช้การคำนวณแบบอุณหภูมิเสมอ (en:isothermal) แทนที่จะเป็นแบบแอเดียแบติก (en:adiabatic) ซึ่งสูตรของนิวตันนั้นขาดตัวคูณ κ)
ที่สภาพบรรยากาศมาตรฐาน (standard atmosphere) :
0 = 273.15 K (= 0 °C = 32 °F) ความเร็วเสียง 331.5 m/s (= 1087.6 ft/s = 1193 km/h = 741.5 mph = 643.9 นอต
20 = 293.15 K (= 20 °C = 68 °F) ความเร็วเสียง 343.4 m/s (= 1126.6 ft/s = 1236 km/h = 768.2 mph = 667.1 นอต
25 = 298.15 K (= 25 °C = 77 °F) ความเร็วเสียง 346.3 m/s (= 1136.2 ft/s = 1246 km/h = 774.7 mph = 672.7 นอต
ในกรณีของก๊าซในอุดมคติ อัตราเร็วของเสียง ขึ้นกับอุณหภูมิเท่านั้น โดยไม่ขึ้นกับความดัน อากาศนั้นเกือบจะถือได้ว่าเป็นก๊าซในอุดมคติ อุณหภูมิของอากาศเปลี่ยนแปลงตามระดับความสูง เป็นผลให้อัตราเร็วของเสียงที่ระดับความสูงต่าง ๆ นั้นแตกต่างกัน
ระดับความสูง | อุณหภูมิ | ม./วิ | กม./ชม. | ไมล์/ชม. | นอต |
---|---|---|---|---|---|
ระดับน้ำทะเล | 15 °C (59 °F) | 340 | 1225 | 761 | 661 |
11,000 ม.–20,000 ม. | -57 °C (-70 °F) | 295 | 1062 | 660 | 573 |
29,000 ม. | -48 °C (-53 °F) | 301 | 1083 | 673 | 585 |
ใน ตัวกลางที่ไม่มีการกระจาย (non-dispersive medium) – อัตราเร็วของเสียงไม่ขึ้นกับความถี่ ดังนั้นอัตราเร็วในการส่งถ่ายพลังงาน และ อัตราเร็วเร็วในการเคลื่อนที่ของเสียง นั้นมีค่าเท่ากัน ในย่านความถี่เสียงที่เราสามารถได้ยินนั้น อากาศมีคุณสมบัติเป็นตัวกลางที่ไม่มีการกระจาย โปรดสังเกตว่า CO2 ในอากาศนั้นเป็นตัวกลางที่มีการกระจาย และทำให้เกิดการกระจายสำหรับคลื่นเสียงความถี่สูง (28KHz)
ใน ตัวกลางที่มีการกระจาย (dispersive medium) – อัตราเร็วของเสียงจะขึ้นกับความถี่ องค์ประกอบที่แต่ละความถี่จะเดินทางด้วยความเร็วเฟส (phase velocity) ที่แตกต่างกัน ส่วนพลังงานของเสียงจะเดินทางด้วยความเร็วที่ความเร็วกลุ่ม (group velocity) ตัวอย่างของตัวกลางที่มีการกระจาย คือ น้ำ
อัตราเร็วของเสียงในอากาศ
[แก้]อุณหภูมิเปลี่ยนแปลงสามารถมีผลกระทบต่ออัตราเร็วของเสียงได้ถ้าอุณหภูมิของอากาศเพิ่มขึ้น ณ ความดันคงที่ อากาศย่อม ขยายตัวออกตามกฏของชาร์ลและจะมีความหนาแน่นลดลงทำให้อัตราเร็วของเสียงเพิ่มขึ้นตามอุณหภูมิอัตราเร็วของเสียงในอากาศจะแปรผันโดยตรงกับอุณหภูมิ(อุณหภูมิเคลวิน)
อัตราเร็วของเสียงในอากาศโดยประมาณหาได้จาก:
โดยที่ คือ อุณหภูมิ ในหน่วย องศาเซลเซียส ความแม่นยำในการประมาณในช่วงของอุณหภูมิในช่วง -20°C ถึง 40°C จะมีค่าความผิดพลาดไม่เกิน 0.2% ในช่วงอุณหภูมิสูงกว่า หรือ ต่ำกว่านั้นอัตราเร็วของเสียงจะประมาณโดย
ผลของอุณหภูมิ | |||
---|---|---|---|
θ (°C) | c (m/s) | ρ (kg/m³) | Z (N·s/m³) |
−10 | 325.4 | 1.341 | 436.5 |
−5 | 328.5 | 1.316 | 432.4 |
0 | 331.5 | 1.293 | 428.3 |
+5 | 334.5 | 1.269 | 424.5 |
+10 | 337.5 | 1.247 | 420.7 |
+15 | 340.5 | 1.225 | 417.0 |
+20 | 343.4 | 1.204 | 413.5 |
+25 | 346.3 | 1.184 | 410.0 |
+30 | 349.2 | 1.164 | 406.6 |
เลขมัค คือ อัตราส่วนอัตราเร็วของวัตถุ ต่อ อัตราเร็วของเสียง ในอากาศ (หรือตัวกลางนั้น)
การเคลื่อนที่ของวัตถุใด ๆ ด้วยอัตราเร็วเท่ากับเสียง ณ ตำแหน่งนั้น จะเรียกว่าอัตราเร็ว 1 มัค (Mach) ในทำนองเดียวกันถ้าเคลื่อนที่ด้วยอัตราเร็ว 2 เท่าของอัตราเร็วของเสียงวัตถุนั้นก็จะมีความเร็วเป็น 2 มัค
ตัวอย่างอัตราเร็วของเสียงในตัวกลางต่าง ๆ
[แก้]ตารางด้านล่าง แสดงค่าอัตราเร็วของเสียงในตัวกลาง ที่อุณหภูมิ 20°C
ชนิดวัสดุ | ความเร็ว (m/s) |
---|---|
อากาศ | 343 |
น้ำ | 1480 |
น้ำแข็ง | 3200 |
แก้ว | 5300 |
เหล็ก | 5200 |
ตะกั่ว | 1200 |
ไทเทเนียม | 4950 |
พีวีซี (อ่อน) | 80 |
พีวีซี (แข็ง) | 1700 |
คอนกรีต | 3100 |
ฮีเลียม | 927 |
การใช้อัตราเร็วของเสียงวัดระยะทาง
[แก้]- ความหนาแน่นของตัวกลาง อัตราเร็วในตัวกลางที่มีความหนาแน่นมากกว่าจะมีค่ามากกว่าในตัวกลางที่มีความหนาแน่นน้อยกว่า
- อุณหภูมิ อัตราเร็วเสียงจะแปรผันตรงกับรากที่ 2 ของอุณหภูมิเคลวิน เพราะอุณหภูมิสูงขึ้นจะทำให้โมเลกุล มีพลังงานจลน์มากขึ้นการอัดตัวและขยายตัวเร็ว ทำให้เสียงเคลื่อนที่ได้เร็วขึ้น
จึงได้ว่า V ∝√T และสำหรับในอากาศนั้น เราสามารถหาอัตราเร็วเสียงที่อุณหภูมิต่าง ๆ ได้โดยอาศัย
สมการ v = vo + 0.6 t หรือ v = 331 + 0.6 t เมื่อ Vo = อัตราเร็วเสียงที่อุณหภูมิ 0°C = 331 m/s t = อุณหภูมิ (°C)
การใช้อัตราเร็วของเสียงวัดระยะทาง
[แก้]การใช้คลื่นเสียงวัดระยะทาง ส่วนมากจะใช้ในน้ำ เนื่องจากอัตราเร็วของเสียงในน้ำมีค่าสูงกว่ายานพาหนะหรือวัตถุอื่นที่เคลื่อนที่ในน้ำมาก เช่นการวัดความลึกของทะเล หรือการใช้คลื่นโซนาร์เป็นเรดาร์ของชาวประมงในการสำรวจหาฝูงปลาเป็นต้น
อ้างอิง
[แก้]- ธรรมธร ไกรก่อกิจ (ZEN ACOUSTIC), "เสียงและความเร็วเสียง" เก็บถาวร 2016-03-09 ที่ เวย์แบ็กแมชชีน, สืบค้นวันที่ 19 ธันวาคม 2558