สมการเชิงเส้น

จากวิกิพีเดีย สารานุกรมเสรี
ตัวอย่างกราฟของสมการเชิงเส้น

สมการเชิงเส้น คือสมการที่แต่ละพจน์มีเพียงค่าคงตัว หรือเป็นผลคูณระหว่างค่าคงตัวกับตัวแปรยกกำลังหนึ่ง ซึ่งจะมีดีกรีของพหุนามเท่ากับ 0 หรือ 1 สมการเหล่านี้เรียกว่า "เชิงเส้น" เนื่องจากสามารถวาดกราฟของฟังก์ชันบนระบบพิกัดคาร์ทีเซียนได้เป็นเส้นตรง รูปแบบทั่วไปของสมการเชิงเส้นในตัวแปร x และ y คือ

y = mx + b \!

โดยที่ m คือค่าคงตัวที่แสดงความชันหรือเกรเดียนต์ของเส้นตรง และพจน์ b แสดงจุดที่เส้นตรงนี้ตัดแกน y สำหรับสมการที่มีพจน์ x2, y1/3, xy ฯลฯ ที่มีดีกรีมากกว่าหนึ่งไม่เรียกว่าเป็นสมการเชิงเส้น

ตัวอย่าง[แก้]

สมการเหล่านี้ล้วนเป็นสมการเชิงเส้น

x + 2y = 10 \!
3a + 472b = 10b + 37 \!
2x + y -5 = -7x + 4y +3 \!

รูปแบบของสมการเชิงเส้นในสองมิติ[แก้]

สมการเชิงเส้นที่ซับซ้อน อย่างเช่นตัวอย่างข้างบน สามารถเขียนใหม่โดยใช้กฎเกณฑ์ของพีชคณิตมูลฐานให้อยู่ในรูปแบบที่ง่ายขึ้น ในสิ่งที่จะอธิบายต่อไปนี้ อักษรตัวใหญ่ใช้แทนค่าคงตัว (ที่ไม่ระบุจำนวน) ในขณะที่ x และ y คือตัวแปร

รูปแบบทั่วไป[แก้]

Ax + By + C = 0 \!

เมื่อ A กับ B ไม่เป็นศูนย์พร้อมกัน สมการในรูปแบบนี้มักเขียนให้ A ≥ 0 เพื่อความสะดวกในการคำนวณ กราฟของสมการจะเป็นเส้นตรง และทุกๆ เส้นตรงสามารถนำเสนอให้อยู่ในรูปแบบข้างต้นนี้ได้ เมื่อ A ไม่เท่ากับ 0 ระยะตัดแกน x จะอยู่ที่ระยะ −C/A และเมื่อ B ไม่เท่ากับ 0 ระยะตัดแกน y จะอยู่ที่ระยะ −C/B ส่วนความชันของเส้นตรงนี้มีค่าเท่ากับ −A/B

รูปแบบมาตรฐาน[แก้]

Ax + By = C \!

เมื่อ A และ B ไม่เป็นศูนย์พร้อมกัน และทั้ง A, B, C จะต้องเป็นจำนวนเต็มที่มีตัวหารร่วมมากเท่ากับ 1 และมักเขียนให้ A ≥ 0 เพื่อความสะดวกเช่นกัน รูปแบบมาตรฐานนี้สามารถแปลงให้เป็นรูปแบบทั่วไปได้ไม่ยากนัก

รูปแบบความชันและระยะตัดแกน[แก้]

y = mx + b \!

เมื่อ m แทนความชันของเส้นตรง และ b คือระยะตัดแกน y ซึ่งเป็นพิกัด y ของจุดที่เส้นตรงนั้นตัดผ่านแกน y ถ้าหากให้ค่า x = 0 เราจะเห็นสมการนี้อยู่ในรูปแบบ y = b

รูปแบบจุดและความชัน[แก้]

y - y_1 = m \cdot (x - x_1) \!

เมื่อ m คือความชันของเส้นตรงและ (x1, y1) คือจุดใดๆ บนเส้นตรงนั้น ซึ่งสามารถเปลี่ยนให้อยู่ในรูปแบบความชันและระยะตัดแกนได้โดยง่าย รูปแบบจุดและความชันแสดงให้เห็นถึงระยะทางระหว่างจุดสองจุดบนเส้นตรงนั้นในแนวแกน x และแกน y โดยมีจุด (x1, y1) เป็นจุดยืน

ในบางโอกาสเราอาจเห็นรูปแบบจุดและความชันอยู่ในรูปแบบนี้

\frac{y - y_1}{x - x_1} = m

แต่อย่างไรก็ตาม ถ้าหาก x = x1 สมการนี้จะไม่มีความหมาย

รูปแบบระยะตัดแกน[แก้]

\frac{x}{E} + \frac{y}{F} = 1

เมื่อ E และ F ต้องไม่เป็นศูนย์ทั้งคู่ กราฟของสมการนี้จะมีระยะตัดแกน x เท่ากับ E และระยะตัดแกน y เท่ากับ F รูปแบบระยะตัดแกนสามารถแปลงให้อยู่ในรูปแบบมาตรฐานได้โดยกำหนดให้ A = 1/E, B = 1/F และ C = 1

รูปแบบจุดสองจุด[แก้]

y - k = \frac{q - k}{p - h} (x - h)

เมื่อ ph กราฟนี้จะเป็นเส้นตรงที่ลากผ่านจุด (h, k) และจุด (p, q) โดยมีความชันเท่ากับ m = (qk) / (ph) รูปแบบจุดสองจุดสามารถแปลงให้เป็นรูปแบบจุดและความชันได้ โดยการคำนวณหาค่าที่เจาะจงของความชันมาแทนที่ตำแหน่งของ m

รูปแบบอิงพารามิเตอร์[แก้]

\begin{align} x & = Tt + U \\ y & = Vt + W \end{align}

รูปแบบนี้เป็นสมการหลายชั้น (simultaneous equations) สองสมการในพจน์ของตัวแปรพารามิเตอร์ t ที่มีความชัน m = V/T โดยมีระยะตัดแกน x อยู่ที่ (VUWT) / V และระยะตัดแกน y อยู่ที่ (WTVU) / T

สมการรูปแบบนี้มีความสัมพันธ์กับรูปแบบจุดสองจุด เมื่อ T = ph, U = h, V = qk, และ W = k จะได้

\begin{align} x & = (p - h)t + h \\ y & = (q - k)t + k \end{align}

ซึ่งในกรณีนี้ค่าของ t จะแปรผันตั้งแต่ 0 ที่จุด (h, k) ไปยัง 1 ที่จุด (p, q) ค่าของ t ที่อยู่ระหว่าง 0 กับ 1 ทำให้เกิดการประมาณค่าในช่วง (interpolation) ส่วนค่าอื่นของ t จะทำให้เกิดการประมาณค่านอกช่วง (extrapolation)

รูปแบบเส้นแนวฉาก[แก้]

y \sin \phi + x \cos \phi - p = 0 \!

เมื่อ φ คือมุมเอียงของเส้นแนวฉาก และ p คือความยาวของเส้นแนวฉาก เส้นแนวฉากนี้คือระยะทางของส่วนของเส้นตรงที่สั้นที่สุด ที่เชื่อมระหว่างกราฟเส้นตรงของสมการเชิงเส้นกับจุดกำเนิด รูปแบบเส้นแนวฉากสามารถแปลงจากรูปแบบทั่วไปได้โดยหารสัมประสิทธิ์ทั้งหมดด้วย \sqrt{A^2 + B^2} และถ้าหาก C > 0 ให้คูณสัมประสิทธิ์ทั้งหมดด้วย −1 เพื่อให้ค่าคงตัวตัวสุดท้ายติดลบ รูปแบบนี้เรียกว่า รูปแบบมาตรฐานเฮสส์ ซึ่งตั้งขึ้นเพื่อเป็นเกียรติแด่นักคณิตศาสตร์ชาวเยอรมัน ลุดวิก ออตโต เฮสส์ (Ludwig Otto Hesse)

กรณีพิเศษ[แก้]

y = F \!

สมการนี้อยู่ในรูปแบบมาตรฐานเมื่อ A = 0 และ B = 1 หรือในรูปแบบความชันและระยะตัดแกนเมื่อความชัน m = 0 กราฟของสมการนี้จะเป็นเส้นตรงในแนวนอนโดยที่มีระยะตัดแกน y เท่ากับ F ถ้า F ≠ 0 กราฟนี้จะไม่มีระยะตัดแกน x แต่ถ้า F = 0 กราฟนี้จะมีระยะตัดแกน x เป็นจำนวนจริงทุกจำนวน

x = E \!

สมการนี้อยู่ในรูปแบบมาตรฐานเมื่อ A = 1 และ B = 0 กราฟของสมการนี้จะเป็นเส้นตรงในแนวดิ่งโดยที่มีระยะตัดแกน x เท่ากับ E ส่วนความชันนั้นไม่นิยาม ถ้า E ≠ 0 กราฟนี้จะไม่มีระยะตัดแกน y แต่ถ้า E = 0 กราฟนี้จะมีระยะตัดแกน y เป็นจำนวนจริงทุกจำนวน

y = y \! และ x = x \!

ในกรณีนี้ทั้งตัวแปรและและค่าคงตัวทั้งหมดถูกตัดออกไป เหลือไว้เพียงประพจน์ที่เป็นจริงอย่างชัดเจน สมการเหล่านี้จะเรียกว่าเป็นเอกลักษณ์ และไม่จำเป็นที่จะพิจารณาในรูปแบบกราฟ (เนื่องจากหมายถึงจุดทุกจุดบนระนาบ xy) ดังตัวอย่าง 2x + 4y = 2(x + 2y) นิพจน์ทั้งสองข้างของเครื่องหมายเท่ากับนั้นเท่ากันเสมอ ไม่ว่าค่าของ x และ y จะเป็นค่าใด

โปรดสังเกตว่าการปรับเปลี่ยนทางพีชคณิต อาจทำให้ประพจน์เกิดความเป็นเท็จ อาทิ 1 = 0 ซึ่งเราจะเรียกสมการนั้นว่าเป็น สมการที่ขัดแย้งกัน หมายความว่า ไม่ว่าค่าของ x และ y จะเป็นค่าใด สมการก็ยังเป็นเท็จอยู่เสมอและไม่สามารถวาดกราฟได้ ดังเช่นสมการนี้ 3x + 2 = 3x - 5

สมการเชิงเส้นที่มากกว่าสองตัวแปร[แก้]

สมการเชิงเส้นสามารถมีตัวแปรได้มากกว่า 2 ตัว สมการเชิงเส้นทั่วไปที่มีจำนวนตัวแปร n ตัวสามารถเขียนได้ในรูปแบบ

a_1 x_1 + a_2 x_2 + \cdots + a_n x_n = b

ซึ่ง a_1, a_2, ..., a_n เป็นสัมประสิทธิ์ x_1, x_2, ..., x_n คือตัวแปร และ b คือค่าคงตัว เมื่อเราต้องการเขียนสมการตัวแปรน้อยๆ เช่น 3 ตัว เราอาจแทนที่ x_1, x_2, x_3 ด้วยชื่อตัวแปรอื่นๆ เช่น x, y, z ได้ตามต้องการ

สมการดังกล่าวจะเป็นการนำเสนอระนาบเกิน n–1 มิติ (hyperplane) ในปริภูมิแบบยุคลิด n มิติ เช่นระนาบสองมิติในปริภูมิสามมิติ เป็นต้น

ดูเพิ่ม[แก้]

แหล่งข้อมูลอื่น[แก้]