ระบบสมการเชิงเส้น

จากวิกิพีเดีย สารานุกรมเสรี
ระบบสมการเชิงเส้นสามตัวแปรกำหนดหมู่ระนาบ จุดส่วนร่วมคือผลเฉลย

ในวิชาคณิตศาสตร์ ระบบสมการเชิงเส้นเป็นหมู่สมการเชิงเส้นที่เกี่ยวข้องกับตัวแปรชุดเดียวกัน ตัวอย่างเช่น

\begin{alignat}{7}
3x &&\; + \;&& 2y             &&\; - \;&& z  &&\; = \;&& 1 & \\
2x &&\; - \;&& 2y             &&\; + \;&& 4z &&\; = \;&& -2 & \\
-x &&\; + \;&& \tfrac{1}{2} y &&\; - \;&& z  &&\; = \;&& 0 &
\end{alignat}

เป็นระบบสามสมการที่มีสามตัวแปร x, y, z ผลเฉลยของระบบสมการเชิงเส้นเป็นการแทนค่าจำนวนในตัวแปรซึ่งทำให้สมการทั้งหมดสอดคล้องกันพร้อมกัน ผลเฉลยของระบบสมการเชิงเส้นข้างต้น คือ

\begin{alignat}{2}
x &\,=\,& 1 \\
y &\,=\,& -2 \\
z &\,=\,& -2
\end{alignat}

เพราะทำให้ทั้งสามสมการสมเหตุสมผล คำว่า "ระบบ" เป็นการชี้ว่าต้องพิจารณาสมการทั้งหมดร่วมกัน ไม่ใช่แยกกัน

ในวิชาคณิตศาสตร์ ทฤษฎีระบบสมการเชิงเส้นเป็นพื้นฐานและส่วนหลักมูลของพีชคณิตเชิงเส้น หัวข้อซึ่งใช้ในคณิตศาสตร์สมัยใหม่ส่วนมาก ขั้นตอนวิธีการคณนาสำหรับการหาผลเฉลยเป็นส่วนสำคัญของพีชคณิตเชิงเส้นตัวเลข และมีบทบาทเด่นในวิชาวิศวกรรมศาสตร์ ฟิสิกส์ เคมี วิทยาการคอมพิวเตอร์และเศรษฐศาสตรฺ ระบบสมการไม่เชิงเส้นมักประมาณโดยใช้ระบบสมการเชิงเส้นได้ ซึ่งเป็นเทคนิคที่ช่วยได้มากเมื่อสร้างแบบจำลองทางคณิตศาสตร์หรือการจำลองระบบที่ค่อนข้างซับซ้อนทางคอมพิวเตอร์

บ่อยครั้ง สัมประสิทธิ์ของสมการเป็นจำนวนจริงหรือจำนวนเชิงซ้อน และผลเฉลยหาได้โดยชุดจำนวนเดียวกัน แต่ทฤษฎีและขั้นตอนวิธีนี้ใช้ได้กับสัมประสิทธิ์และผลเฉลยในทุกสาขา สำหรับผลเฉลยในโดเมนปริพันธ์อย่างริงของจำนวนเต็ม หรือในโครงสร้างพีชคณิตอื่น ได้มีการพัฒนาทฤษฎีอื่นออกมา กำหนดการเชิงเส้นจำนวนเต็มเป็นการรวมวิธีสำหรับการหาผลเฉลยจำนวนเต็ม "ที่ดีที่สุด" (เมื่อมีหลายผลเฉลย)