ภาวะเชิงอันดับที่
ในทางคณิตศาสตร์ โดยเฉพาะกับทฤษฎีเซต เซตอันดับสองเซต X, Y จะกล่าวว่ามี ภาวะเชิงอันดับที่ (อังกฤษ: order type, ordinality) เท่ากัน ก็ต่อเมื่อเซตทั้งสองสมสัณฐานเชิงอันดับ (order isomorphic) นั่นคือ มีฟังก์ชันหนึ่งต่อหนึ่งทั่วถึง (bijection) f : X → Y อย่างน้อยหนึ่งฟังก์ชัน ที่ทั้ง f และ f −1 เป็นฟังก์ชันทางเดียว (monotone function) (ยังคงเรียงตามลำดับ)
ตัวอย่างเช่น เซตของจำนวนเต็มและเซตของจำนวนคู่ มีภาวะเชิงอันดับที่เท่ากัน เพราะว่าการจับคู่ n ↦ 2n ยังคงเรียงตามลำดับ แต่เซตของจำนวนเต็มกับเซตของจำนวนตรรกยะไม่สมสัณฐานเชิงอันดับ ถึงแม้ว่าจะมีขนาดเท่ากัน เพราะไม่มีการจับคู่แบบหนึ่งต่อหนึ่งทั่วถึงที่ยังคงเรียงตามลำดับระหว่างสองเซตนั้น
อันเนื่องจากความเทียบเท่าเชิงอันดับเป็นความสัมพันธ์สมมูล (equivalence relation) มันจึงแบ่งคลาสของเซตทั้งหมด ให้เป็นคลาสที่สมมูลกันหลายคลาส
ภาวะเชิงอันดับที่ของเซตอันดับดี
[แก้]เซตอันดับดี (well-ordered set) ทุกเซตถือว่ามีความเทียบเท่าเชิงอันดับเท่ากับจำนวนเชิงอันดับที่หนึ่งตัว จำนวนเชิงอันดับที่ถูกนำมาใช้เป็นตัวแทนแบบบัญญัติ (canonical representative) ต่อคลาสของมันเอง และเช่นเดียวกับภาวะเชิงอันดับที่ของเซตอันดับดี ซึ่งมักจะถูกระบุโดยจำนวนเชิงอันดับที่ที่เกี่ยวข้อง เช่นภาวะเชิงอันดับที่ของจำนวนธรรมชาติคือ ω
ภาวะเชิงอันดับที่ของเซตอันดับดี V บางครั้งก็เขียนแทนด้วย ord (V) [1]
ยกตัวอย่างการพิจารณาเซตของจำนวนเชิงอันดับที่คู่ (even ordinal) ที่น้อยกว่า ω·2+7 ซึ่งหมายความว่า
- V = {0, 2, 4, 6, ...; ω, ω+2, ω+4, ...; ω·2, ω·2+2, ω·2+4, ω·2+6}
ภาวะเชิงอันดับที่ของ V คือ
- ord (V) = ω·2+4 = {0, 1, 2, 3, ...; ω, ω+1, ω+2, ...; ω·2, ω·2+1, ω·2+2, ω·2+3}
สัญกรณ์
[แก้]ภาวะเชิงอันดับที่ของจำนวนตรรกยะมักจะเขียนแทนด้วย η
ถ้าหากเซต S มีภาวะเชิงอันดับที่เท่ากับ σ แล้ว เซตคู่กัน (dual) ของ S (ในลำดับที่กลับกัน) จะเขียนแทนด้วย σ*
อ้างอิง
[แก้]- ↑ "Ordinal Numbers and Their Arithmetic". คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2009-10-27. สืบค้นเมื่อ 2009-07-27.