ทศนิยมซ้ำ

จากวิกิพีเดีย สารานุกรมเสรี

ทศนิยมซ้ำ คือจำนวนตรรกยะอย่างหนึ่งในเลขฐานสิบ ที่มีตัวเลขบางชุดปรากฏซ้ำกันโดยไม่สิ้นสุด ซึ่งการซ้ำของตัวเลขอาจเกิดขึ้นก่อนหรือหลัง หรือคร่อมจุดทศนิยม และชุดตัวเลขที่ซ้ำกันอาจจะมีเพียงแค่ตัวเลขตัวเดียวก็ได้ ตัวอย่างเช่น 1/3 = 0.333333... (อ่านว่า ศูนย์จุดสาม สามซ้ำ)

สำหรับทศนิยมที่เขียนให้เลข 0 ตัวสุดท้ายซ้ำกันไปเรื่อยๆ ไม่ถือว่าเป็นทศนิยมซ้ำ เนื่องจากตำแหน่งของทศนิยมจะสิ้นสุดก่อนถึงเลข 0 ตัวสุดท้าย เพราะการเติมเลข 0 ซ้ำกันไปเรื่อยๆ นั้นไม่มีความจำเป็น คือไม่ทำให้ค่าของตัวเลขเปลี่ยนแปลงไปจากเดิม เช่น 0.56000000... = 0.56

ในกรณีพิเศษอย่างหนึ่งของทศนิยมซ้ำที่ไม่จำเป็น แต่บางครั้งก็มีประโยชน์ นั่นคือการซ้ำของเลข 9 เพียงตัวเดียว ซึ่งเลข 9 ที่ซ้ำทั้งหมดสามารถละทิ้งได้และเพิ่มค่าหลักที่อยู่ก่อนหน้าขึ้นไปหนึ่ง เช่น 0.999999... = 1 หรือ 1.77999999... = 1.78 โดยทั่วไปแล้ว รูปแบบการซ้ำของเลข 9 ใช้อธิบายว่าจำนวนมีที่มาอย่างไร หรือเพื่อแสดงให้เห็นถึงความสัมพันธ์ที่น่าสนใจ อาทิ 1 = 3/3 = 3 × 1/3 = 3 × 0.333333... = 0.999999... ดูเพิ่มที่ 0.999...

ทศนิยมในประเภทอื่นมี ทศนิยมรู้จบ และทศนิยมไม่รู้จบไม่ซ้ำ

สัญกรณ์[แก้]

ในการเขียนทศนิยมซ้ำให้อยู่ในรูปแบบที่อ่านง่าย ทำได้โดยการเติมขีดแนวนอน (vinculum) ไว้เหนือกลุ่มตัวเลขที่ซ้ำกัน เช่น 1/3 = 0.\bar{3} หรือเติมจุดไว้เหนือกลุ่มตัวเลขที่ซ้ำ ในตำแหน่งเริ่มต้นและตำแหน่งสุดท้าย เช่น 1/7 = 0.\dot{1}4285\dot{7} อย่างไรก็ตาม การใช้จุดประ 3 จุด (…) เป็นวิธีที่ง่ายที่สุดในการนำเสนอทศนิยมซ้ำ ถึงแม้ว่ายังไม่มีคำแนะนำว่าจะต้องเขียนชุดเลขที่ซ้ำมาก่อนกี่ครั้ง ตัวอย่างเช่น

  • 1/9 = 0.111111111111…
  • 1/7 = 0.142857142857…
  • 1/3 = 0.333333333333…
  • 1/81 = 0.0123456790…
  • 2/3 = 0.666666666666…
  • 7/12 = 0.58333333333…

ในแถบยุโรปมีการใช้สัญกรณ์อย่างอื่นที่ต่างออกไป คือใช้เครื่องหมายวงเล็บล้อมรอบชุดตัวเลขที่ซ้ำ เช่น

  • 2/3 = 0. (6)
  • 1/7 = 0. (142857)
  • 7/12 = 0.58 (3)

เศษส่วนที่มีตัวส่วนเป็นจำนวนเฉพาะ[แก้]

ในเศษส่วนอย่างต่ำที่มีตัวส่วนเป็นจำนวนเฉพาะหนึ่งจำนวน p ที่นอกเหนือจาก 2 และ 5 (ซึ่งเป็นคู่จำนวนเฉพาะของ 10) จะมีค่าเป็นทศนิยมซ้ำเสมอ ซึ่งช่วงของการซ้ำในตัวเลขของ 1/p จะอยู่ที่ p − 1 (เป็นกลุ่มที่หนึ่ง) หรือเท่ากับตัวหารตัวใดตัวหนึ่งของ p − 1 (เป็นกลุ่มที่สอง) อย่างใดอย่างหนึ่ง

ตัวอย่างเศษส่วนในกลุ่มแรกมีดังนี้

  • 1/7 = 0.142857…; 6 หลักซ้ำกัน
  • 1/17 = 0.0588235294117647…; 16 หลักซ้ำกัน
  • 1/19 = 0.052631578947368421…; 18 หลักซ้ำกัน
  • 1/23 = 0.0434782608695652173913…; 22 หลักซ้ำกัน
  • 1/29 = 0.0344827586206896551724137931…; 28 หลักซ้ำกัน

ซึ่งรวมไปถึงเศษส่วน 1/47, 1/59, 1/61, 1/97, 1/109 ฯลฯ

การคูณบนเศษส่วนในกลุ่มที่หนึ่ง ได้แสดงคุณสมบัติพิเศษอย่างหนึ่งที่น่าสนใจ เช่น

  • 2/7 = 2 × 0.142857… = 0.285714…
  • 3/7 = 3 × 0.142857… = 0.428571…
  • 4/7 = 4 × 0.142857… = 0.571428…
  • 5/7 = 5 × 0.142857… = 0.714285…
  • 6/7 = 6 × 0.142857… = 0.857142…

ซึ่งดูเหมือนว่า ตัวเลขที่ซ้ำกันในผลคูณจะได้มาจากการเลื่อนวนของ 1/7 แต่สาเหตุที่ทำให้เกิดพฤติกรรมการเลื่อนวนนั้นมาจากการคำนวณเลขคณิตในตัวเลขหลังทศนิยมเท่านั้น ซึ่งเศษส่วนในกลุ่มที่หนึ่งตัวอื่นๆ เช่น 1/17, 1/19, 1/23 ฯลฯ จะมีคุณสมบัติพิเศษเหล่านี้ด้วยเช่นกัน

เศษส่วนในกลุ่มที่สอง คือเศษส่วนที่นอกเหนือจากกลุ่มที่หนึ่งตามเงื่อนไขในตอนต้น อาทิ

  • 1/3 = 0.333…; 1 หลักซ้ำกัน ซึ่ง 1 เป็นตัวหารของ 2
  • 1/11 = 0.090909…; 2 หลักซ้ำกัน ซึ่ง 2 เป็นตัวหารของ 10
  • 1/13 = 0.076923…; 6 หลักซ้ำกัน ซึ่ง 6 เป็นตัวหารของ 12

โปรดสังเกตว่า การคูณเศษส่วน 1/13 ก็สามารถเกิดการเลื่อนวนในตัวเลขที่ซ้ำกัน และจะแบ่งออกเป็นสองชุด ชุดแรกได้แก่

  • 1/13 = 0.076923…
  • 3/13 = 0.230769…
  • 4/13 = 0.307692…
  • 9/13 = 0.692307…
  • 10/13 = 0.769230…
  • 12/13 = 0.923076…

และอีกชุดหนึ่งได้แก่

  • 2/13 = 0.153846…
  • 5/13 = 0.384615…
  • 6/13 = 0.461538…
  • 7/13 = 0.538461…
  • 8/13 = 0.615384…
  • 11/13 = 0.846153…

การสร้างเศษส่วนจากทศนิยมซ้ำ[แก้]

บนทศนิยมซ้ำใดๆ สามารถคำนวณเพื่อเปลี่ยนให้อยู่ในรูปเศษส่วนได้ ดังตัวอย่าง


\begin{array}{lrll}
& x & = 0.333333\dots & \quad (1) \\
(1) \times10; & 10x & = 3.33333\dots & \quad (2) \\
(2) - (1) ; & 9x & = 3 & \\
& x & = 3/9 = 1/3 & \\
\end{array}

หรืออีกตัวอย่างหนึ่ง


\begin{array}{lrll}
& x & = 0.18181818\dots & \quad (1) \\
(1) \times100; & 100x & = 18.181818\dots & \quad (2) \\
(2) - (1) ; & 99x & = 18 & \\
& x & = 18/99 = 2/11 & \\
\end{array}

และเมื่อทศนิยมซ้ำสามารถเขียนให้อยู่ในรูปเศษส่วนได้ ทศนิยมซ้ำจึงเป็นจำนวนตรรกยะเสมอ

วิธีลัด[แก้]

ถ้าทศนิยมซ้ำมีค่าอยู่ระหว่าง 0.1 ถึง 1 และมีตัวเลขที่ซ้ำกันเป็นจำนวน n หลักทางขวาของจุดทศนิยม เราจะเขียนเศษส่วนได้โดยให้ตัวเศษเป็นชุดของตัวเลขที่ซ้ำ และเติมตัวส่วนเป็นเลข 9 จำนวน n ตัว เช่น

  • 0.444444… = 4/9 เนื่องจากชุดเลขซ้ำคือ "4" ซึ่งมี 1 หลัก
  • 0.565656… = 56/99 เนื่องจากชุดเลขซ้ำคือ "56" ซึ่งมี 2 หลัก
  • 0.789789… = 789/999 เนื่องจากชุดเลขซ้ำคือ "789" ซึ่งมี 3 หลัก

ถ้าทศนิยมซ้ำมีค่าอยู่ระหว่าง 0 ถึง 0.1 และมีเพียงเลข 0 จำนวน k หลัก นำหน้าชุดเลขซ้ำ n หลัก (ทั้งหมดต้องอยู่ทางขวาของจุดทศนิยม) ดังนั้นตัวเศษจะเป็นชุดเลขซ้ำ และตัวส่วนประกอบด้วยเลข 9 จำนวน n ตัว และเพิ่มเลข 0 จำนวน k ตัวลงไปด้วย เช่น

  • 0.000444… = 4/9000 เนื่องจากชุดเลขซ้ำคือ "4" และนำด้วย "0" จำนวน 3 หลัก
  • 0.005656… = 56/9900 เนื่องจากชุดเลขซ้ำคือ "56" และนำด้วย "0" จำนวน 2 หลัก
  • 0.0789789… = 789/9990 เนื่องจากชุดเลขซ้ำคือ "789" และนำด้วย "0" จำนวน 1 หลัก

สำหรับทศนิยมอื่นที่นอกเหนือจากนี้ สามารถเขียนเป็นการบวกของทศนิยมรู้จบ กับทศนิยมซ้ำในรูปแบบใดรูปแบบหนึ่งดังที่กล่าวไว้แล้ว ดังตัวอย่าง

  • 1.23444… = 1.23 + 0.00444… = 123/100 + 4/900 = 1107/900 + 4/900 = 1111/900
  • 0.3789789… = 0.3 + 0.0789789… = 3/10 + 789/9990 = 2997/9990 + 789/9990 = 3786/9990 = 631/1665

อย่างไรก็ตาม การใช้วิธีลัดจะยังไม่ให้ผลเป็นเศษส่วนอย่างต่ำ ซึ่งจะต้องทำการลดทอนต่อไปด้วยตัวเอง

หมายเหตุ 0.999999999 ไม่สามารถเขียนเป็นเศษส่วนได้ ยกเว้นส่วนหนึ่ง

แหล่งข้อมูลอื่น[แก้]