ตัวผกผันการบวก

จากวิกิพีเดีย สารานุกรมเสรี

ในทางคณิตศาสตร์ ตัวผกผันการบวก (อินเวิร์สการบวก) ของจำนวน n หมายถึงจำนวนที่บวกกับ n แล้วได้เอกลักษณ์การบวก นั่นคือ 0 ตัวผกผันการบวกของ n เขียนแทนด้วย −n

ตัวอย่างเช่น ตัวผกผันการบวกของ 7 คือ −7 เนื่องจาก 7 + (−7) = 0 และตัวผกผันการบวกของ −0.3 คือ 0.3 เนื่องจาก −0.3 + 0.3 = 0

ตัวผกผันการบวกของจำนวนใดๆ สามารถนิยามเป็นสมาชิกผกผัน (inverse element) ภายใต้การดำเนินการทวิภาคของการบวก และสามารถคำนวณได้โดยการคูณกับ −1 นั่นคือ −n = −1 × n

เซตของจำนวนเต็ม จำนวนตรรกยะ จำนวนจริง และจำนวนเชิงซ้อน ต่างก็มีตัวผกผันการบวก เพราะมีสมาชิกที่เป็นจำนวนลบพอๆ กับจำนวนบวก แต่จำนวนธรรมชาติ จำนวนเชิงการนับ และจำนวนเชิงอันดับที่ ไม่มีตัวผกผันการบวกอยู่ในเซต เนื่องจากจำนวนลบไม่ใช่สมาชิกของเซตดังกล่าว

นิยามทั่วไป[แก้]

กำหนดให้เครื่องหมายบวก + เป็นการดำเนินการทวิภาคการบวกที่มีสมบัติการสลับที่ x + y = y + x ซึ่งการดำเนินการดังกล่าวสามารถกระทำได้บนสมาชิกเป็นกลาง o เช่น x + o = o + x = x และมีเพียงหนึ่งเดียว o' = o' + o = o ดังนั้นหากมีค่า x และ x' ที่ทำให้เงื่อนไขนี้เป็นจริง

x + x' = x' + x = o

จะเรียก x' ว่าเป็นตัวผกผันการบวกของ x (หรือในทางกลับกัน) และตัวผกผันการบวกนี้ก็จะมีเพียงหนึ่งเดียวสำหรับทุกๆ จำนวนจริง

ถ้าหาก + มีสมบัติการเปลี่ยนกลุ่ม (x + y) + z = x + (y + z) ตัวผกผันการบวกก็ยังคงมีเพียงหนึ่งเดียว คือ

x'' = x'' + o = x'' + (x + x') = (x'' + x) + x' = o + x' = x'

ตัวผกผันการบวกเขียนแทนด้วย −x และเราสามารถเขียน xy เป็นการลบแทน x + (−y) ก็ได้

ดูเพิ่ม[แก้]