คลอโรฟิลล์

จากวิกิพีเดีย สารานุกรมเสรี
คลอโรฟิลล์พบได้ตามคลอโรพลาสต์

คลอโรฟิลล์ (อังกฤษ: Chlorophyll) เป็นสารประกอบที่พบได้ในส่วนที่มีสีเขียวของพืช โดยพบมากที่ใบ นอกจากนี้ยังพบได้ที่ลำต้น ดอก ผลและรากที่มีสีเขียว และยังพบได้ในสาหร่ายทุกชนิด นอกจากนี้ยังพบได้ในแบคทีเรียบางชนิด คลอโรฟิลล์ทำหน้าที่เป็นโมเลกุลรับพลังงานจากแสง และนำพลังงานดังกล่าวไปใช้ในการสร้างพลังงานเคมีโดยกระบวนการสังเคราะห์ด้วยแสง เพื่อสร้างสารอินทรีย์ เช่น น้ำตาล และนำไปใช้เพื่อการดำรงชีวิต [1] คลอโรฟิลล์ อยู่ในโครงสร้างที่เรียกว่า เยื่อหุ้มไทลาคอยล์ (Thylakoid membrane) ซึ่งเป็นเยื่อหุ้มที่อยู่ภายใน คลอโรพลาสต์ (Chloroplast) [2]

โครงสร้างทางเคมี[แก้]

คลอโรฟิลล์เป็นสารที่ละลายได้ดีในอะซีโตนและแอลกอฮอล์ โครงสร้างอาจแบ่งได้เป็นสองส่วน คือ ส่วนหัว และส่วนหาง โดยที่ส่วนหัวของคลอโรฟิลล์มีลักษณะเป็นวงแหวนไพรอล (pyrole ring) ที่มีไนโตรเจนเป็นองค์ประกอบอยู่ 4 วง และมีธาตุแมกนีเซียมอยู่ตรงกลางโดยทำพันธะกับไนโตรเจน ส่วนหัวนี้มีขนาดประมาณ 1.5x1.5 อังสตรอม ส่วนหางของคลอโรฟิลล์มีลักษณะเป็นสารประกอบไฮโดรคาร์บอนที่มีคาร์บอนเป็นองค์ประกอบ 20 อะตอม มีความยาวประมาณ 2 อังสตรอม คลอโรฟิลล์ดูดกลืนแสงได้ดีที่ช่วงคลื่นของแสงสีฟ้าและสีแดง แต่ดูดกลืนช่วงแสงสีเหลืองและเขียวได้น้อย ดังนั้นเมื่อได้รับแสงจะดูดกลืนแสงสีฟ้าและสีแดงไว้ ส่วนแสงสีเขียวที่ไม่ได้ดูดกลืนจึงสะท้อนออกมา ทำให้เห็นคลอโรฟิลล์มีสีเขียว [2]

ในธรรมชาติมีคลอโรฟิลล์อยู่หลายชนิดด้วยกันซึ่งแต่ล่ะชนิดมีโครงสร้างหลักที่เหมือนกันคือ วงแหวนไพรอล 4 วง แต่โซ่ข้าง (side chain) ของคลอโรฟิลล์แต่ละชนิดจะมีลักษณะที่ต่างกันออกไป เช่น คลอโรฟิลล์ เอ (chlorophyll a) และคลอโรฟิลล์ บี (chlorophyll b) มีโครงสร้างโมเลกุลที่ต่างกันเพียงตำแหน่งเดียวเท่านั้น นั่นคือ ที่วงแหวนไพรอล วงที่สองของคลอโรฟิลล์ เอ มีโซ่ข้างเป็นหมู่เมททิล (-CH3) ส่วนของคลอโรฟิลล์ บี เป็นหมู่อัลดีไฮด์ (-CHO) ซึ่งการที่โครงสร้างที่ต่างกันนี้ก็ทำให้มีคุณสมบัติแตกต่างกัน รวมทั้งคุณสมบัติการดูดกลืนแสงก็ต่างกันด้วย และทำให้คลอโรฟิลล์ทั้งสองชนิดนี้มีสีต่างกันเล็กน้อย โดยที่คลอโรฟิลล์ เอ มีสีเขียวเข้ม ส่วนคลอโรฟิลล์ บี มีสีเขียวอ่อน

ถ้าทำ paper chromatography ด้วยการไล่ระดับของรงควัตถุในใบไม้นั้น จะเรียงลำดับเม็ดสีที่ได้ โดยดูจากความมีขั้วน้อย-มาก ของเม็ดสีแต่ละชนิดได้ดังนี้[3]

  1. Carotene - an orange pigment
  2. Xanthophyll - a yellow pigment
  3. Chlorophyll a - a blue-green pigment
  4. Chlorophyll b - a yellow-green pigment
  5. Phaeophytin - a gray pigment

อธิบายได้ว่า Carotene มีขั้วน้อยที่สุด แล้วไล่ระดับความมีขั้วเพิ่มขึ้นเรื่อยๆจนมากที่สุดที่ Phaeophytin[4]

ต่อไปนี้เป็นการเปรียบเทียบโครงสร้างของคลอโรฟิลล์แต่ละชนิด

Chlorophyll a Chlorophyll b Chlorophyll c1 Chlorophyll c2 Chlorophyll d
สูตรโมเลกุล C55H72O5N4Mg C55H70O6N4Mg C35H30O5N4Mg C35H28O5N4Mg C54H70O6N4Mg
หมู่ C3 -CH = CH2 -CH = CH2 -CH = CH2 -CH = CH2 -CHO
หมู่ C7 -CH3 -CHO -CH3 -CH3 -CH3
หมู่ C8 -CH2CH3 -CH2CH3 -CH2CH3 -CH = CH2 -CH2CH3
หมู่ C17 -CH2CH2COO-Phytyl -CH2CH2COO-Phytyl -CH = CHCOOH -CH = CHCOOH -CH2CH2COO-Phytyl
พันธะ C17-C18 เดี่ยว เดี่ยว คู่ คู่ เดี่ยว
พบได้ ทั่วไป ส่วนใหญ่ในพืช สาหร่ายหลายชนิด สาหร่ายหลายชนิด แบคทีเรียที่สังเคราะด้วยแสงได้ (Cyanobacteria)
โครงสร้างของ chlorophyll a
โครงสร้างของ chlorophyll b
โครงสร้างของ chlorophyll d
โครงสร้างของ chlorophyll c1
โครงสร้างของ chlorophyll c2

การสังเคราะห์คลอโรฟิลล์[แก้]

การสร้างคลอโรฟิลล์เริ่มจากการสร้าง tetrapyrrole ที่เป็นวง โดยใช้กรดอะมิโน 5-aminolevulinic acid (ALA)เป็นสารตั้งต้น ในแบคทีเรียสีม่วงบางชนิดสร้างกรดอะมิโนชนิดนี้ขึ้นมาจาก succinyl CoA และไกลซีน ในไซยาโนแบคทีเรีย และพืชชั้นสูงจะสร้าง ALA โดยใช้กลูตาเมตในรูป glutamyl-tRNA เป็นสารตัวกลาง การสร้างคลอโรฟิลล์ในพืชเป็นวิถีที่ต้องมีการควบคุมอย่างมาก ในพืชมีดอกและพืชชั้นต่ำและสาหร่ายบางชนิดเช่นยูกลีนา การเปลี่ยนรูปของ protochlorophyllidae ไปเป็น chlorophyllide a เป็นขั้นตอนที่เมื่อมีแสง ในอีทิโอพลาสต์ของใบที่เจริญในที่มืด จะสะสม protochlorophyllidae ในระดับที่ต่ำมาก เมื่อใบพืชได้รับแสง protochlorophyllidae จะเปลี่ยนไปเป็น chlorophyllide a อย่างรวดเร็วจนหมด และสร้าง protochlorophyllidae ขึ้นมาใหม่ ใบที่ถูกแสงจึงกลายเป็นสีเขียว และถ้ามี protochlorophyllidae เหลืออยู่ การสังเคราะห์จะหยุดลง โดย protochlorophyllidae จะไปยับยั้งที่ปฏิกิริยาแรกคือยับยั้งการสร้าง ALA แต่ถ้าเพิ่ม ALA จากภายนอกเข้าไปจะเกิดการสังเคราะห์ protochlorophyllidae ขึ้นได้[5]

การสลายตัวคลอโรฟิลล์อาจเกิดจากมลพิษได้โดยโพลีไซคลิกอะโรมาติกไฮโดรคาร์บอนทำให้คลอโรฟิลล์บีในพืชลดลง[6] ส่วนสารมลพิษที่มีคลอรีนเป็นองค์ประกอบและสารกำจัดวัชพืชเช่นไกลโฟเสตทำให้คลอโรฟิลล์เอลดลง[7]

อ้างอิง[แก้]

  1. วงษ์จันทร์ วงษ์แก้ว. 2535. หลักสรีรวิทยาของพืช. กรุงเทพฯ, ฟันนี่พับบลิชชิ่ง
  2. 2.0 2.1 ภาคภูมิ พระประเสริฐ. สรีรวิทยาของพืช. กรุงเทพฯ, โอเดียนสโตร์. 2550
  3. ควรระบุ stationary phase และ mobile phase ด้วยเพราะมีผลต่อการเคลื่อนที่ และระบุความมีขั้วของสาร
  4. เอกสารประกอบการสอนวิชา MIC101 General Biology มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี สอนโดย ดร.สุคนธ์ ตันติไพบูลย์วุฒิ[ตัวอย่างทั่วไป]
  5. Mohr, H. and Schopfer, P. 1995. Plant Physiology. Springer
  6. Huang, Xiao-Dong, El-Alawi, Y., Penrose, D.M., Glick, B.R. and Greenberg, B.M. 2004. Responses of three grass species to creosote during phytoremediation. Environmental Pollution, 130, 453-463
  7. Wong, P.K. 2000. Effects of 2,4-D, glyphosate and paraquat on growth, photosynthesis, and chlorophyll a synthesis of Scenedesmus quadricauda Berb 614. Chemosphere, 41, 177-182.